CrIS Trace Gas Data Users Workshop: Goals and Agenda

Matthew J. Alvarado Atmospheric and Environmental Research

18-19 September 2014 College Park, Maryland

Copyright 2014, Government sponsorship acknowledged.

Why are we here?

- Trace gas retrievals from thermal infrared (TIR) sounders (e.g., TES, AIRS, MOPITT, IASI) are used extensively by scientists studying:
 - Atmospheric Chemistry
 - Air Quality
 - The Carbon and Nitrogen Cycles
 - Climate Change
- All of the NASA EOS TIR sounders (TES, AIRS, and MOPITT) are past their design lifetimes, and there are no current plans at NASA to replace these instruments.

Cross-track Infrared Sounder

- Fourier Transform Infrared (FTIR) Spectrometer aboard Suomi-NPP
- NOAA is planning to launch future versions on JPSS-1 (2017), JPSS-2 (2022), ...
- NOAA NUCAPS produces retrievals of O₃, CO, CO₂, CH₄, N₂O, HNO₃, and SO₂
- AER prototype retrieves NH₃
- But the current products are not extensively used by the science communities and they need to be further evaluated.

CrIS/IIROD total column O3 at 10/16/2012

CrIS Total O_3 from Larry Flynn, NOAA/NESDIS

CrIS versus other TIR sounders

	ΜΟΡΙΤΤ	AIRS	TES	IASI	CrIS
Satellite	EOS-Terra	EOS-Aqua	EOS-Aura	MetOp-A/B	Suomi-NPP
Launch	1999	2002	2004	2006/2012	2011
Technique	Gas-cell Correlation Radiometry	Grating Spectrometer	FTIR Spectrometer	FTIR Spectrometer	FTIR Spectrometer
Resolution	0.04 cm ⁻¹ (eff. res.)	0.5-2.3 cm ⁻¹ (λ/Δλ=1200)	0.10 cm ⁻¹ apodized	0.50 cm ⁻¹ apodized	0.625 cm ⁻¹ (potential)
Footprint	22x22km	45x45km (cloud- cleared)	5x8 km	12 km circle (2x2 array)	14 km circle (3x3 array)
Swath	640 km	1650 km	N/A	2200 km	2200 km
Global Coverage	3 days	Twice Daily	16 days	Twice Daily	Twice Daily
Eq. crossing (am/pm)	~10:20	~1:15	~1:40	~8:45/9:30	~1:30

CrIS Noise Remarkably Low!

Spectrum Comparison

Not an instrument limitation – 0.625 cm⁻¹ data for these bands coming soon!

Band	Spectral range [cm ⁻¹]	Spectral range [µm]	Band width [cm ⁻¹]	Resolution $\Delta \sigma$ [cm ⁻¹]	MPD [em]
LW	650 – 1095	15.4 – 9.1	445	0.625	0.8
MW	1210 – 1750	8.3 – 5.7	540	1.25	0.4
SW	2155 – 2550	4.6 – 3.9	395	2.5	0.2

Simulated CrIS spectrum overlaid with IASI and AIRS spectra

Image from Y. Han and D. Tremblay (NOAA) 2012 AMS Talk

Need For Full Resolution CrIS Data

Simulated NUCAPS CO Retrieval

[Gambacorta et al., 2014]

Spectrum Comparison

Not an instrument limitation – 0.625 cm⁻¹ data for these bands coming soon!

Band	Spectral range [cm ⁻¹]	Spectral range [µm]	Band width [cm ⁻¹]	Resolution $\Delta \sigma$ [cm ⁻¹]	MPD [em]
LW	650 – 1095	15.4 – 9.1	445	0.625	0.8
MW	1210 – 1750	8.3 – 5.7	540	1.25	0.4
SW	2155 – 2550	4.6 – 3.9	395	2.5	0.2

Image from Y. Han and D. Tremblay (NOAA) 2012 AMS Talk

IASI NH₃ column (summer) Need an "Observation Operator" to compare models with satellites (and sats w/ other obs!)

L. Schiferl and C. Heald are investigating Interrannual variability in NH₃ using IASI and AMoN

2008

3 [10¹⁶ molec cm⁻²]

No Data 0

• Challenge: new IASI ammonia product does not include averaging kernels [Van Damme et al., 2014]

Figures from Luke Schiferl and Colette Heald, MIT

What is needed to increase use of CrIS trace gas products?

- Demonstrate that:
 - The scientific community needs these products
 - Operational users (e.g., AQ and chemical weather forecasters) within and outside NOAA need these products
- More communication between retrieval, science, and operational end user teams
- Validation of products
- Improvement of current products based on validation
- Development of new products

NASA Workshop on Polar Sounders: Atmospheric Composition (Nov. 2010)

- Get full spectral resolution from CrIS

 Should be available by end of 2014
- Assess the products that can be retrieved from CrIS and their potential accuracy compared to other sounders
 - Much work has been done on retrieving gases from CrIS
 - But further validation needed and additional products may be possible
- Use multi-spectral approaches to obtain nearsurface trace gas data
 - Lots of work done with MOPITT NIR/TIR, TES/OMI, AIRS/OMI, and CrIS/OMPS for CO and O₃, but much more work to do!
 - Combine at retrieval or assimilation level?

Agenda

- Today:
 - JPSS Overview
 - CrIS Trace Gas Retrievals
 - Use of TIR Retrievals in Atmospheric Chemistry and Climate Studies
 - Poster Session and Reception
- Tomorrow
 - Breakout Sessions
 - Greenhouse Gases (e.g., CH₄, CO₂, N₂O)
 - Air Quality (e.g. CO, O₃, NH₃)
 - Discussion
 - Assign Action Items

After the Workshop

- Keep talking!
- Community report on what needs to be done to use CrIS for atmospheric chemistry
- Op. Ed. In EOS or other forums
- Coordinate with field campaigns for validation activities

Logistics

- UM Shuttle
 - Back to Holiday Inn at 7:30 PM Thursday
 - From Holiday Inn at 7:30 AM Friday
 - Back to Holiday Inn at 5 PM Friday
- Meals
 - Reception at poster session tonight
 - Breakfast at 8 AM Friday
 - Box Lunch at 12 PM Friday

