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“Because greenhouse gases fit well
within the Clean Air Act’s capacious
definition of “air pollutant,” we hold that
EPA has the statutory authority to
regulate the emission of such gases
from new motor vehicles.”

MASSACHUSETTS v. EPA

Opinion of the Court, April 274, 2007
Justice Stevens

Air pollutants now include Greenhouse Gases (GHG)

Air quality constituents, e.g., ozone and black carbon, are also GHGs

Air quality can effect both human and environmental health, with implications for
carbon cycle feedbacks
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The 25 members of the Climate and Clean Air Coalition have

Why Black Carbon and Ozone AlSO Matteagreed to vastly reduce black carbon, methane and ozone

By Jessica Seddon Wallack and Veerabhadran Ramanathan
September /October 2009
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Fiona Harvey in Doha
guardian.co.uk, Thursday 6 December 2012 11.54 EST

The potential of short-lived climate
pollutants (SLCP) for rapid climate
mitigation has received considerable
attention.
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The regional temperature response is a
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The Atmospheric Chemistry-Climate Model Intercomparison
Project (ACCMIP) estimated historic radiative forcing (RF)
and future response using consistent emissions for the IPCC
5th assessment. (Lamarque et al, 2013)
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L o % In the tropics, discrepancies lead to
. /| € |over 300 mWm- for individual
i| 2 |models and up to 100 mWm-2 for
the ACCMIP ensemble.
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y-axis. X-axis:

Absolute deviation  pmagnitude of ACCMIP/TES ozone RF
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mean RF

Significant correlation for ACCMIP OLR bias and ozone RF: R*=0.59
Removing MOCAGE and CESM reduces correlation to R?=0.18

ACCMIP/TES ozone RF = 394 + 42 m\Wm-2
About 28% reduction compared ACCMIP RF=389 + 60 m\Wm-
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loca
ontributions of NO, emissions — the primary source of ozone— to the global mean
Attribution: thermal absorption of ozone observed by the NASA TES satellite instrument in

The combination of August, 2006.
TES IRK with the LTS
GEOS-Chem adjoint
can attribute OLR
variability to
spatially-resolved
precursor emissions

Adapted from Bowman
and Henze, GRL, 2012
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Key Findings:

« The top 15 regional contributors to global ozone greenhouse gas levels were predominantly located in China
and the United States, including regions that encompass New Orleans, Atlanta and Houston.

« There is significant regional variability —by more than a factor of 10-- in how efficiently emitted chemicals lead
to heat-trapping ozone in Earth’s atmosphere.

« For example, reducing ozone precursor emissions in the Atlanta region has three times the impact on
climate as an equivalent reduction of emissions in Chicago.
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October 21, 2013

Joint CrIS+OMPS-NP retrievals
have similar information content as
TES following approach in Worden
et al, 2007,Hasekampf and
Landgraf, 2007, Fu et al, 2013,
Cuesta et al, 2013

Preliminary IRKs produced for |IASI
in a joint CNRS/ULB Brussells/
NCAR/JPL collaboration
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Geo-CAPE, TEMPO

* |ASI+GOME-2 will provide UV+IR ozone products for more than a decade as a part of
METOP-(A,B,C).
« Continued investments in UV+IR algorithms.
 LEO observations to integrate GEO platforms
« Opportunity to cross-calibrate observations
« Combined UV+IR ozone products from GEO-UVN and GEO-TIR aboard Sentinel 4 (Ingmann
et al, 2012 Atm. Env.)
* CrIS+OMPS could provide critical afternoon ozone and OLR observations
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&f‘ Coﬁc’fnsrcns and Future D%cbens

 Monitoring of short-lived climate pollutants (SLCP), including tropospheric
ozone, is a critical need for chemistry-climate science and climate mitigation
strategies

 TES observations have quantified the greenhouse gas effect of ozone at
unprecedented spatio-temporal scales (Worden et al, 2012)

 ACCMIP/TES studies have documented presented day bias of OLR and
refined ozone RF estimates (Bowman et al, 2013)

e GISS/TES studies have quantified the balance of ODS in whole atmosphere
radiative forcing (Shindell et al, 2013)

 GEOS-Chem/TES have attributed ozone RF to spatially-resolved precursor
emissions at unprecedented scales. (Bowman and Henze, 2012)

e CrIS/OMPS shows considerable promise in continuing TES ozone and IASI
has shown the potential of IRK products from other sounders.

e CrlIS algorithms and products need to be developed in the context of a
broader AQ-SLCP constellation and assimilation system (Bowman, 2013)
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Key Science Facts:

» Positive ozone changes lead to positive radiative forcing (RF)
in the troposphere or negative RF in the stratosphere.

« Ozone depleting substances (ODS), e.g., CFCs, HFCs,
remove ozone but are also important greenhouse gases

(GHG).

Shindell et al, Nature Climate Change, 2013 used the the
GISS chemistry-climate model biased-corrected with
TES ozone (~30% reduction in ODS RF) to compute the
“whole-atmosphere” ozone radiative forcing from ozone
precursor emissions like NO, and ODS

The GISS/TES analysis found that
1. ozone RF from industrial precursor emissions was

0.47 W/m2, about 35% higher than reported in the
IPCC AR4 (0.35 W/m?2).

2. ozone RF from ODS by reducing both tropospheric
and stratospheric ozone was -0.23 W/mZ2, much
lower than previous studies

3. Positive RF from ODS as a GHG (0.32 W/m?) is
almost compensated by the ODS as a negative
ozone RF
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Figure 3 | Difference in annual average radiative forcing (Wm %)
between the GISS-EZ-R model's ozone and cbserved TES czone
throughout the atmosphere.




