Improved Understanding of the Processes Controlling Tropospheric O₃ and CO₂ from Space-based IR Retrievals

> Dylan Jones University of Toronto

CrIS Atmospheric Chemistry Users workshop September 18-19, 2014

Improved understanding of the processes influencing the global distribution of tropospheric O_3 is needed for better prediction of air quality and for quantifying climate change.

Inverse Modeling of CO

- Satellite observations of CO suggest greater emissions of CO in winter than a priori inventories in North America and East Asia.
- Season variation in top-down emissions, with greater wintertime emissions, is in agreement with previous work by Kopacz et al. (2009), but regional total are different.

Inverse Modeling of CO Using Multiple Trace Gases

Assimilation of TES O₃, MOPITT CO, and OMI NO₂ Nov 2- 15, 2009

- Integrating TES O₃ and OMI NO₂ produces larger source estimates in the extratropics (particularly East Asia)
- With TES O₃, the reductions in CO emissions in South Asia are enhanced

[Keller et al., in prep]

Inverse Modeling of CO Using Multiple Trace Gases

Assimilation of TES O₃, MOPITT CO, and OMI NO₂ Nov 2- 15, 2009

CO Emission Estimates for Different Biomass Burning Regions based on GFED-2 and GFED-3 a priori emissions [Tg/year]

- Assimilating data from only one instrument produces a posteriori BB estimates that are sensitive to the prior
- For North Africa, assimilating all instruments provides sufficient information to strongly constrain the source estimate
- For South Africa and northern Australia, the a posteriori emissions are sensitive to the prior even when assimilating multiple instruments
- Optimizing these weaker sources may require a longer assimilation window

[Keller et al., in prep]

Improved understanding of the processes influencing the global distribution of tropospheric O_3 is needed for better prediction of air quality and for quantifying climate change.

Impact of Lightning NOx Emissions on O₃ Over North America

Modeled O₃ Over North America along 40°N

- The upper tropospheric ozone maximum is linked to NOx emissions from lightning, which were 0.068 Tg N for North America (in August), a factor of 4 lower than recommended by Hudman et al. [JGR, 2007] based on comparisons of the model with aircraft data.
- Assimilation increased upper tropospheric ozone over the southeast by 11 ppb, in agreement with the estimate of 10 ppb from Hudman et al. [JGR, 2007] for the enhancement in upper troposphere ozone due to lightning NOx.

Improved understanding of the processes influencing the global distribution of tropospheric O_3 is needed for better prediction of air quality and for quantifying climate change.

Satellite Constraints on background O₃

Assimilation of TES O₃ data Jul - Aug. 2006

- Assimilation of TES corrected the underestimate in O₃ in the model (due to lightning NOx emissions)
- Without assimilation the model underestimated background ozone by as much as 9 ppb (in western North America)

[Parrington et al., GRL, 2009]

Error is background ozone without assimilation

Inverse modeling of TES CO₂ data for 2006

Free tropospheric CO_2 data provide constraints on surface fluxes of CO_2 that are complementary to those from the surface observing network.

High-resolution inverse modeling of TES and GOSAT CO₂ for 2010

- TES and GOSAT Flux estimates for Europe and boreal Asia are consistent
- TES suggest a weaker sink in Temperate Eurasia and Tropical Asia
- Flux estimates from TES are biased low for Temperature North America and Tropical South America, reflecting the influence biases in TES CO₂ in the subtropics

11

Impact of TES CO₂ over the Asian Monsoon Region

TES assimilation enhances CO₂ in the Asian monsoon anticyclone