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NH, and PAN play critical roles in
atmospheric chemistry.
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NH,

What can TES observations tell us about process-based
emissions of ammonia?

PAN

What can TES PAN observations tell us about the sources
and transport of PAN and O, with attention to

anthropogenic intercontinental transport, biomass
burning, and lightning?



GEOS-Chem was used to derive 3 a priori

profiles of TES NH..

Sensitivity peak: 700-900 hPa.
Bias: ~ +0.5 ppb (at 825 hPa).

Detection limit: ~ 1 ppb.
(Shephard et al., 2011)

TES NH; spatial and seasonal
trends verified by surface obs.
(Pinder et al., 2011)
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Optimized NH, profiles more closely
resemble TES retrieval.
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* Prior NH; profiles lower than TES retrieval. [NH_, ppbv

* Optimized model still underestimates TES retrievals.
* Reductions of the cost function: 66% for April, 42% for July, 57% for October.

Zhu etal., 2013



TES improves the model in the central and western
US consistent with other studies.

NH; emissions Initial Optimized

April
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: M. | [ . S
0 2.33 467  7.00 [106 kg] 2.00 -0.67 067  2.00 [unitless]

* Changes in CA consistent with Walker et al. [2012] and Nowak et al. [2012]
* Central US underestimates noted from IIASI [Clarisse et al., 2009; Heald et al., 2012]

Zhu etal., 2013



TES assimilation improves the comparison
with AMoN in April & October.
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* Model values below 1 ppb did not change significantly due to TES detection limit.

Zhu etal., 2013



TES assimilation overestimates AMoN in July.
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* Possible reasons for July bias:

» Sampling bias due to TES level-of-detectability (i.e., lack of low values) or
spatial sampling.

* TES overpass time (1:30 AM & PM) points to missing model diurnal variability;
new diurnal variability scheme improves comparison with SEARCH obs.

* Bi-directional exchange was neglected in GC (zhu et al., in prep).

Zhu etal., 2013



TES sampling strategy leads to a +30% bias
in surface concentration.
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Future solution:
Include more retrievals with peak value of profile below 1 ppbwv.

Zhu etal., 2013



A new GEOS-Chem PAN simulation was used

to develop 6 a priori profiles.
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East Asia is a major PAN export region.
We are focusing here first.

TES PAN, ppbv, trop avg value, April 2008
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Elevated TES PAN is associated with
elevated CO in fire plumes.

300

2501
200
150t
100t

N o)
oo ©

—_
(&)

—_
o

0.0

10 24 38 52 66 8010 24 38 52 66 8010 24 38 52 66 80

#7656, 20080701

#7741, 20080705

#7776, 20080707

latitude [degrees]

°
-2
L-2 o
°° L3
-2
WO %9
] o 9 8,2 ® % |
LA TR 5 s .o 8% %
20 20 B - So 2 3
P 3&'% 2 X 86%«? o8 % ° B %"os . ®
<
+
" +
+ ] + 1 0 ++
4 * 4y + + ot t
e i | | e ] | i

latitude [degrees]

latitude [degrees]

TES observations from July
2008 ARCTAS campaign
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Spring 2008 was an extreme year for biomass
burning in East Asia.

TES, trop avg value, East Russia

MODIS Fire Radiative Power
April 2008
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In April 2008, fires are a main source of extreme
PAN and strong relationships with CO and O..
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There is evidence of fire PAN and CO being exported
over the Pacific in April 2008.
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Conclusions

TES NH; values are higher than initial model but potentially biased.

TES assimilation enriches our understanding of NH; emissions in
the West and Midwest US .

TES assimilation better captures the range and variability of surface
NH,; in April and October, but it is biased high in July.

Preliminary Conclusions

Fires are a main source of extreme PAN in April 2008 and we see
strong relationships with CO and O, in East Asia.

e Elevated TES PAN is associated with elevated CO in fire plumes.
 There is evidence of fire PAN and CO exported over Pacific.



Thanks !

liyezhu@atmos.colostate.edu



NH, has large impacts on human health and
the environment.

PM, . causes bronchitis, asthma,
premature mortality...

Eutrophication Soil acidification
Smog - e
o Alga blooms; Hypoxia; Nitrification of NH,*
Decreases visibility. Cloudy, colored water. into NO,, releasing H*.

Large uncertainties in NH; inventories.



PAN is the route for NO, to reach the
remote troposphere.

Transport at cold temperatures

(CH;C(O)O,NO,)

thermal
decomposition

v
NO,—> HNO,

for |

O, and OH

NO, Source Region Remote Atmosphere

Jacob 1998



Implementing diurnal variability for
livestock NH; emissions reduces bias.
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E4: daily NH; emission;

E, (t): NH; emission at hour t;
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Scheme developed based on field studies downwind of livestock
facilities in North Carolina (Bash et al., in prep.)



Implementing diurnal variability for
livestock NH; emissions reduces bias.

SSr July SEARCH (obs sites locate in SE US)
GC with constant hourly emission
GC with diurnal emission adjusted
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NH, decreased at nlght by several ppb; increased in day up to 1 ppb.
Monthly average surface NH; (and NO;l) decreased.

NH; concentration (at TES overpass time 13:30) can be impacted
without changing total emissions.

Improves TES assimilation results compared to Zhu et al. 2013.



