

Retrieval of CH₄ and N₂O using NUCAPS and Applications

Xiaozhen (Shawn) Xiong, Quanhua Liu, Antonia Gambacorta, Fuzhong Weng, and NUCAPS Team

NOAA/NESDIS/STAR, Maryland, USA

College Park, Sept 18, 2014

Outline

- NUCAPS and Trace Gases Retrieval from AIRS, IASI and CrIS
- L1 Requirement of Trace Gases in JPSS-1 and status of CH₄ and N₂O retrieval from S-NPP
- Some Results of N₂O Retrieval using AIRS
- AIRS CH₄: Validation and Applications
 - 1. CH₄ Plume over South Asia during Monsoon Season;
 - 2. CH₄ depletion during stratospheric Intrusion;
 - 3. Arctic CH₄ monitoring;
- Summary

NUCAPS and Trace Gases Retrieval using Hyper Spectral Infrared Sounders: AIRS, IASI, CrIS

AIRS on NASA/Aqua 1:30 pm orbit (May 4, 2002)

IASI on METOP-A(Oct. 19, 2006) METOP-B(Sept 27,2012) 9:30 am orbit

CrIS on NPP 1:30 pm orbit (Oct.28,2011) and JPSS

AIRS Trace Gases Products

JPSS-1 Requirements

EDR Attribute	СО	CO ₂	CH ₄
Vertical Coverage	Total Column	Total Column	Total Column
Horizontal Resolution	100 km	100 km	100 km
Mapping Uncertainty, 3 sigma	25 km	25 km	25 km
Measurement Range	0 – 200 ppbv	300 – 500 ppmv	1100 – 2250 ppbv
Measurement Precision	35%	0.5% (2 ppmv)	1% (~20 ppbv)
Measurement Accuracy	±25%	±1% (4 ppmv)	±4% (~80 ppbv)
Refresh	24 h	24 h	24 h
Note			

NUCAPS Sounding Products Released at NOAA CLASS since April 8, 2014

- > Atmospheric Vertical Temperature Profile
- Atmospheric Vertical Moisture Profile
- Infrared Ozone Profile
- (requirement: total column)
- Vertical CO Profile
- Vertical CO₂ Profile
- Vertical CH₄ Profile
- Outgoing Longwave Radiation (OLR)
- > (new)
- Vertical HNO₃ Profile
- Vertical N₂O Profile
- Vertical SO₂ Profile
- > A flag indicating the presence of dust and volcanic emissions
- Cloud-Cleared Radiances

Set-up of CH₄ and N₂O retrieval First guess of CH₄ and N₂O is updated

CH₄ Firstguss and its Comparison with HIPPO data

Comparison of CH₄ from CrIS and AIRS

•Full spectrum data from CrIS on NPP and JPSS can be used to obtain similar N₂O and CH₄ products like AIRS

Monitor global N₂O trend

Why is it important ?

- >One important greenhouse gases: life time 120 years,
- ➢ Warming potential is 300 times of CO₂;
- ≻has a nearly linear increase of 0.26% yr⁻¹ over the last three decades [IPCC, 2007].
- ≻N₂O is recognized as the single most important anthropogenically emitted stratospheric ozone depleting substance [Ravihsankara et al., 2009].

Advantage of TIR in N₂O Observation

Largest variability is in the Mid-Upper troposphere from HIPPO aircraft measurements

Selection of N₂O Channels

Instrument sensitivity($\Delta T/\Delta Z$) for 2% change in N₂O mixing ratio, K/km

MOZART on May, 2004

Enhancement of N₂O in the tropics

AIRS N₂O at 515hPk

AIRS N₂O at 750hPa

1.53

AIRS on 5/15/2012

Monitor the N₂O trend using TIR

Xiong, X. et al., 2014, Retrieval of Nitrous Oxide from Atmospheric Infrared Sounder Characterization and Validation, JGR-atmosphere (under revision).

A larger variation of N₂O in the mid-upper troposphere from AIRS than aircraft measurment

Xiong et al., JGR-atmosphere, 2014

Validation is important

Locations of Validation Profiles

Validation Results : AIRS-V6 CH₄ (paper is to be submitted to AMT, 2014)

More Applications

-- Transport or Emission

300

CH₄ at 407 hPa

Xiong et al., GRL, 2013

Xiong et al., Methane Plume over South Asia during the Monsoon Season: Satellite Observation and Model Simulation, <u>ACP.</u>, 9, 783-794, 2009.

AIRS CH₄ over South Asia (JJAS)

9405: 00LA/IDE

Model

2007-10-17-12:33

Agree with AIRS data, CARIBIC aircraft measurement also showed significant increase of CH4 during the monsoon season

Monitor CH₄ emissions in the Arctic

 Supporting the climate change study:
CH₄ emissions from permafrost and hydrate leakage under the impact of global warming

Ground-based observation network is sparse;

CH₄ remote sensing using NIR sensors (1.6 μm) is hampered by its low reflectivity over snow/ice/water surfaces and low solar angles in the Arctic;

Advantage of TIR sensors (all seasons, large swath)

Summary

Hyperspectral IR sounders from AIRS provide over 12 years data since 2002; Continued measurement will be made using CrIS on S-NPP and J-1, -2, as well as IASI.

The peak sensitivity of TIR is in the mid-upper troposphere with low sensitivity near the surface, so it is hard to distinguish the impact of transport or emission based on TIR products.

But, it is promising to monitor the trend of N₂O in the midupper troposphere; We may provide valuable long-term measurement of CH₄ over the Arctic regions where no sensors available to make good measurements in the near future;

More validation and improvement to algorithm need to be done, especially for trend analysis;

– depending on the funding

