Extension of TES NH₃ and CO algorithms to CrIS

Karen Cady-Pereira¹, Helen Worden², Mark Shephard³, Jean-Luc Moncet¹, Alan Lipton¹, Richard Lynch¹, Vivienne Payne⁴, and **Matt Alvarado**¹

¹Atmospheric and Environmental Research ²National Center for Atmospheric Research ³Environment Canada ⁴Jet Propulsion Laboratory, California Institute of Technology

Copyright 2014, Government sponsorship acknowledged.

Motivation

- NH₃ and CO are important trace gases
- TES and MOPITT Apr. observations are used to optimize NH₃ and CO emissions and July investigate their atmospheric impacts Oct.
- Both instruments are past their design lifetimes
- CrIS could monitor global NH₃ and CO for many more years

Constraining NH₃ **emissions with TES:.** *Zhu et al., JGR, 2013.*

Extending the EOS NH₃ and CO Records with CrIS

- Will use the same optimal estimation approach and constraints adopted for TES NH₃, TES CO, and MOPITT CO.
- This approach:
 - Allows easy comparison with model output (via AKs)
 - Provides error estimates for the retrieved profiles
 - Builds a consistent record from 1999 for CO and from 2004 for NH₃ to beyond 2022!
- CrIS's large coverage could provide more information for constraining sources.

Enhanced AER CrIS/ATMS Algorithm (PI Moncet, NASA S-NPP Science Team)

- Flexible, modular software infrastructure that will:
 - Facilitate algorithm component comparisons and validation
 - Include advanced treatments of clouds, radiative transfer, surface emissivity/reflectivity, background data, and the atmospheric profile
- Primary products will include T_{atm}, T_{surf}, H₂O, cloud fraction, and cloud top T and P
- Secondary products could include O₃, NH₃, CO, LWP/IWP, and MW and IR surface emissivity/ reflectivity.

Enhanced AER CrIS/ATMS Algorithm

- Treatment of clouds adapts to conditions
 - Cloud Clearing as in AIRS Science Team and NUCAPS algorithm
 - Estimate clear-sky spectrum from multiple adjacent cloudy spectra
 - Hole Hunting
 - Identify clear-sky gaps in cloudy areas
 - Simultaneous Cloud Property Retrieval from EUMETSAT IASI algorithm
 - Algorithm operates on cloudy radiances while retrieving cloud parameters
- Fast and accurate radiative transfer
 - Baseline is Optimal Spectral Sampling (OSS)
 - Molecular absorption from AER's MonoRTM and LBLRTM models, including Non-LTE and Zeeman splitting of O₂ lines
 - Flexible structure allows alternative fast models, like SARTA

NH₃ Sources

Biomass burning

- Automobiles (catalytic converters)
- Large urban centers
 - 50% of NH₃ in LA area

Industry

- Fertilizer
- Coal Mining
- Power generation

AGRICULTURE

- Animal waste (temperature dependent)
- Fertilizer application

NH₃ in the atmosphere

PM_{2.5}

 $NH_3 + HNO_3 \leftarrow \rightarrow NH_4NO_3$ $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \rightarrow (\text{NH}_4)_2 \text{SO}_4$ Long-range export

Long-range import

Nitrogen Deposition

- Increase incidence of cardiovascular and respiratory diseases
- Increase number of CCN
- Alter ecosystems

aer

Atmospheric and **Environmental Research**

SO₂, NO_x decreasing but NH₃ forecast to increase

Global NH₃ Emissions

NH₃ signal from TES and CrIS

CrIS Microwindows and Constraints

310

305

300

- Lower spectral resolution of CrIS required different microwindows.
- A priori and constraints from TES ٠ (Shephard et al., 2011)
 - Polluted, Moderately polluted, and **Unpolluted profiles**
- A priori selected based on signal to • noise ratio (SNR) and thermal contrast

400

500

600

700

800

900

1000

0.001

[>]ressure (hPa)

CrIS NH₃ Microwindows

MMMM

TES and CrIS Sensitivity to NH₃

- Both instruments most sensitive to NH₃ between 950 and 600 mbar
- TES is more sensitive to amounts lower in the atmosphere
- 1 piece of information or less: DOFS<1.0

C

- Collapse all information to a single point: RVMR
 - Easier to compare with in situ measurements, models and other instruments

Validation with surface NH₃ data

NH₃ is highly reactive → highly variable in space and time

 NH₃ from an Open path Quantum Cascade Laser (QCL) on a moving platform in the San Joaquin Valley during DISCOVER-AQ 2013.

Miller et al., AMT, 2014

TES and CrIS versus surface NH₃

• QCL directly under TES transect in the San Joaquin Valley on January 28, 2013

Future Work on CrIS NH₃ Retrieval

- Validate against SENEX, FRAPPE, and other field NH₃ measurements.
- Use CMAQ adjoint to test ability of CrIS to optimize NH₃ emissions.
- Incorporate NH₃ into AER CrIS/ATMS algorithm and deliver to NASA SIPS
- Incorporate into NUCAPS?

NH₃ mixing ratios (ppbv) measured by the NOAA WP-3 aircraft during SENEX 2013. (Figure courtesy of Jesse Bash, US EPA NERL.)

Summary

- A prototype NH₃ retrieval for CrIS, based on the TES algorithm, has been built and tested
 - LOD ~ 1 ppb, DOFS < 1.0, sensitive slightly higher in atmosphere than TES
 - Algorithm performs well for simulated spectra
 - Qualitatively similar to surface data from DISCOVER-AQ
 - Further validation needed (e.g., SENEX and FRAPPE)
- A similar CrIS CO algorithm, based on the MOPITT and TES approaches, is planned
- Both algorithms will be incorporated into the enhanced AER CrIS/ATMS algorithm for delivery to NASA SIPS

Acknowledgements

- NOAA CPO AC4 Program
- TES Science Team
- NASA Suomi-NPP Science Team

CrIS NH₃ Retrieval: Simulated Spectra

