Dual-Polarization Radars, Including WSR-88Ds

Don Burgess
OU CIMMS/Retired from - Affiliated with NSSL

NSF Community Workshop on Radar Technologies November 27, 2012

Important Information

 The fundamentals of this presentation and other Dual-Polarization training materials for outreach (NWS, media, others) are at:

– http://www.wdtb.noaa.gov/modules/dualpol/index.htm

Explaining Dual-Polarization

Dual-polarization radars emit EM waves with **horizontal** and **vertical** polarizations

- Alternating H & V Transmission requires an expensive fast switch and longer acquisition times = EXPENSIVE & SLOW

WSR-88D Dual-Polarization Upgrade

Simultaneous Transmission And Reception (STAR); Slant 45

- Transmit at 45°, receive at both horizontal and vertical
- There is a PROBLEM! Split the power; 3-dB sensitivity loss

NOT 3 dBZ loss!!

List of New WSR-88D Dual-Pol Outputs

- 3 New Variables (like moments)
 - Differential Reflectivity (Zdr)
 - Correlation Coefficient (Rhv)
 - Specific Differential Phase (Kdp)¹
- 3 New Algorithms¹
 - Melting Layer Detection (MLDA)
 - Hydrometeor Classification (HCA)
 - Precipitation Estimation (QPE)
- 9 NEW Precipitation Estimation Display Products¹

¹ Level II users get something different; need preprocessor

New Product #1: Differential Reflectivity (Zdr)

Definition	Possible Range of Values	Units	Abbreviated Name
Measure of the log of the ratio of the horizontal to vertical power returns	-4 to 10	Decibels (dB)	ZDR (AWIPS)

$$ZDR = 10\log_{10}\left(\frac{Z_h}{Z_v}\right)$$

Horizontal Reflectivity

Vertical Reflectivity

Zdr Physical Interpretation

Spherical (drizzle, small hail, etc.)

Horizontally Oriented (rain, melting hail, etc.)

Vertically Oriented

(i.e. vertically oriented ice crystals)

$$Z_h \sim Z_v$$

$$Z_h > Z_v$$
 $Z_h < Z_v$

$$Z_h < Z_v$$

$$10\log_{10}\left(\frac{Z_h}{Z_v}\right) = 0 \quad 10\log_{10}\left(\frac{Z_h}{Z_v}\right) > 0 \quad 10\log_{10}\left(\frac{Z_h}{Z_v}\right) < 0$$

$$(Z_v)$$

$$10\log_{10}\left(\frac{Z_h}{Z_v}\right) < 0$$

ZDR ~ 0 dB

ZDR < 0 dB

Why Would You Examine Zdr?

Larger Zdr: large liquid drops dominate

Smaller Zdr: small drops or hail dominate

New Product #2 Correlation Coefficient (Rhv)

Definition	Possible Range of Values	Units	Abbreviated Name
Measure of similarly of the horizontally and vertically polarized pulse behavior within a pulse volume	0 to 1	None	CC (AWIPS) ρ _{Ην} (Literature)

$$CC = \frac{\left\langle S_{vv} S_{hh}^* \right\rangle}{\left(\left\langle S_{hh}^2 \right\rangle^{1/2} \left\langle S_{vv}^2 \right\rangle^{1/2} \right)}$$

What is Rhy Used for?

- Non-weather targets (LOW Rhv < 0.80)
 - Best discriminator
- Melting layer detection (Ring of reduced Rhv ~ 0.80 – 0.95)
- Giant hail or tornadic debris (LOW Rhv < 0.70 in the midst of high Z/Low Zdr)

New Product #3: Specific Differential Phase Shift (Kdp)

- Definition: gradient of the difference between phase shift in the horizontal and vertical directions
- Units: degrees per kilometer (°/km)

$$\boldsymbol{\Phi}_{DP} = \boldsymbol{\Phi}_H - \boldsymbol{\Phi}_V$$

Differential phase shift

What KDP Means

The propagation differential phase shift Φ_{DP} monotonically increases with distance from the radar. Kdp is the Φ dp change per unit area

Kdp Advantage

- Immune to partial (
 40%) beam blockage, attenuation, radar calibration, presence of hail
- Kdp Disadvantage
 - Noisy, needs smoothing

KDP value is large because of the steep slope (rapid increase in differential phase shift = lots of liquid water = heavy rain

Melting Layer Detection Algorithm (MLDA)

- Based on Bright Band observation
- Uses Z, Rhv, and Zdr
- 4°-10° elevation angles
- Rings for partial beam and full beam location
- For WSR-88D, can be overridden by:
 - RAP model estimate
 - Input sounding
 - Forecaster input value

Hydrometeor Classification Algorithm (HCA)

- Most immature of the three algorithms!
 - Poor performance in winter weather
- Algorithm makes best guess of dominant radar echo type for each gate location (uses MLDA)
 - Display Product for each radar elevation angle
- Based on Fuzzy Logic, currently 11 categories
- New categories under development:
 - Tornado Debris
 - Large Hail

Quantitative Precipitation Algorithm (QPE)

 QPE & Legacy (PPS) both being processed by ORPG

• (Based on HCA) QPE uses:

- rain: R(Z, Zdr)

- hail: R(Kdp)

- freezing: R(Z) x (0.3 --- 0.8)

- Using HCA, all non-precip returns are eliminated
- Partial beam blockage still a problem (narrow sliver in northwest quadrant on image)

Two-Day total for Hurricane Irene from Morehead City, NC WSR-88D (KMHX)

QPE Verification

- QPE better than PPS when hail present: R(Kdp)
- Verification Scores
 - hail cases removed
 - ->0.5" accumulation
 - ~2,200 radar/gauge pairs

	PPS	QPE
RMSE	0.82"	0.75"
Bias	20"	0.03"

Courtesy ROC Applications Branch and Kim Elmore

WSR-88D Dual-Pol Data Quality Issues

- Sensitive components require careful calibration
 - Most critical are
 - initial system Zh/Zv power levels & PHIh/PHIv
 - Zdr measurement accuracy to +/- 0.1 db
 - Performance Maintenance Data helps
 - Every volume scan & 8-hour checks performed
 - Expected values for Zdr are checked by ROC & field sites
- Cross Coupling/depolarization between the H and V (STAR signals) will occur in ice and mixed phase regions because of canted particles
- Non-Uniform Beam Filling biases/degrades dual-polarization outputs
- ROC investigating Cross-Polar Power Technique to potentially improve calibration
 - Transmit H, Receive V (ground clutter) & Sun Scans
 - Project results are still ~2 years away

WSR-88D Performance Maintenance Data

• For **Receiver**, Zdr bias checked every volume scan during retrace (antenna return to 0.5° elevation). Zdr bias change of +/- 0.1 dB between volume scans considered bad

• For **Transmitter**, Power output for H & V channels and initial system differential phase checked every 8 hours during off-line performance check (~3 minutes)

 Note: Antenna bias is measured and updated during installation and is not changed unless hardware affecting antenna bias is changed.

KVNX Preprocessed Cumulative Scattergram 2011/06/28 10:02-13:38 VCP:11

Cross-Coupling: Non-zero Mean Canting Angle Induced Errors

- Cross Coupling (also called depolarization) between the H and V simultaneous transmitted signals will occur in ice and mixed phase regions because of canted particles
- Large errors in Zdr can result
- Differential attenuation should be corrected using ϕ_{dp} only

From Ryzhkov et al, 2006. KOUN Data, Courtesy of John Hubbert

Non-Uniform Beam Filling

- Strong horizontal and vertical gradients of Z, Zdr, and PHIdp within the beam can produce significant biases in Zdr, Rhv, and PHIdp
- Note, Kdp not calculated in such cases

Dual-Polarization Applications

- Supercells
- Tornadoes
- Very Large Hail
- Winter Storms
- Flash Floods
- Tropical Cyclones
- Cloud Studies (Melnikov, et al, 2011)
- Bird/Insect Migrations
- Boundary Layer Studies
- Many More

Low-Level Supercell Dual-polarization Signatures

Dual-Polarization Tornado Signature

- <u>Description</u>: Radar Return from Tornado Debris: low Rhv, low Zdr
- <u>Utility</u>: Help with Tornado Warnings
 - Prevent missed tornadoes
 - Accurate Severe Weather Updates, pinpoint tornado location
- <u>Limitations</u>: Not Seen with All Tornadoes
 - Seen with strong (EF2/EF3) & violent (EF4/EF5) tornadoes
 - Seen with only some (EF0/EF1) tornadoes
 - Max detection range not yet known
 - Dependent on existence of objects & particulate matter capable of being lofted
- Research underway to add an HCA category for tornado debris

Preliminary validation of HSDA with SHAVE reports

D < 2.5 cm (1.0 in.)

Small hail (hail / rain)

 $2.5 \text{ cm } (1.0 \text{ in.}) \le D < 5.0 \text{ cm } (2.0 \text{ in.})$

Large hail

 $D \ge 5.0 \text{ cm } (2.0 \text{ in.})$

Giant hail

Where is it Snowing at the Ground?

Dual-Polarization at Other Wavelengths

- At wavelengths smaller than S-Band (10 cm), scattering properties produce some differences in dual-polarization signatures
- Full Mie Scattering Equation instead of the Rayleigh Approximation must be used for most particles at X- & C-Bands
- Resonance Scattering occurs at X- & C-Bands for raindrops and frozen particles
- At X-Band, backscatter differential phase must be removed from the total differential phase

X-Band Tornado Debris Signature (TDS)

- RApid X-Band Dual-POLarization Radar (RAXPOL) data from May 24, 2011 near El Reno, OK
- ~4 km Range
- EF5 tornado, 105 km path length, 9 fatalities [First EF5 tornado in Oklahoma since May 3, 1999]
- Note extreme Radial Velocities (Vr; undealiased) of ~125 m/s
- Note TDS signature of relatively-high Zh, and very-low Rhv and Zdr
- Also note unusual PHIdp signature
- See Burgess & Schwarz Poster for another X-band TDS signature

Courtesy of Bluestein, Snyder, and Houser

Comparison Between X-Band Dual Polarization and Disdrometers

- Mobile disdrometer & NOXP radar data from 12 June 2010
- VORTEX2 Case
- Note large number concentration of raindrops, scarcity of graupel and hail

- Good comparison between radar and derived-from-disdrometer Z and Zdr
- Radar data attenuation corrected
- Worse comparisons for cases with larger amounts of graupel/hail present

Courtesy of Friedrich, Kolina

New Dual-Pol Signatures We Don't Understand: Low Reflectivity Ribbon (LRR)

- Seen several times during VORTEX2
- June 5, 2009, Goshen Co, WY
 - DOW data, seen by multiple radars
 - LRR is narrow, vertical section (black line) shows vertical extent to >6 km
 - Seen near time of tornadogenesis
- June 13, 2010, Booker, TX
 - DOW data, seen by DOWs and NOXP
 - Signature in Zdr and other dual-pol parameters
 - Strong dual-pol gradients present

Courtesy of Josh Wurman

Summary

- Dual Polarization offers wonderful new opportunities for weather analysis and research
- Challenges remain:
 - Data quality and calibration
 - Correcting for attenuation
 - Better understanding of scattering phenomena
- Significant advances are within our reach:
 - Improved knowledge of precipitation/storm microphysics
 - Assimilation of dual-polarization information into numerical models

Kdp Has Big Advantages

- Immune to partial (< 40%) beam blockage, attenuation, radar calibration, presence of hail
- Used primarily for rainfall estimation and locating heavy rain

Conclusions

- Cross Coupling between the H and V simultaneous transmitted signals will occur in ice and mixed phase regions
- All radars have imperfect antennas and therefore polarization errors
- For a radar with a -35 dB LDR limit, Zdr errors still can be from 1.5 to 2.5 dB, max. (function of ϕ_{do})
- The Zdr bias is a strong function of the transmit polarization state (H-to-V phase difference).
- To minimize cross coupling due to antenna polarization errors, the channel isolation should be as low as possible. Best strategy is to have an antenna with excellent isolation
- Using self consistency among Z, Zdr and ϕ_{dp} , the Zdr bias can be detected in region with about 100 degrees of ϕ_{dp}
- Differential attenuation should be corrected using ϕ_{dp} only

Physical Polarization Error Sources

- Surface error of the parabolic dish
- Blockage due to support struts and horn
- Feed horn (likely most significant)
- Radome irregularities
- Wetting of the radome

Implications

- Rainfall estimates using SHV data based on Zdr are suspect, especially for larger ϕ_{dp}
- Differential attenuation correction even if it is done without error, the corrected data will still contain bias due to antenna errors
 - Better to use only ϕ_{dn}

Performance Maintenance Data (PMD)

- PMD is information describing the status of the system.
- It is a component of Level II data, thus is potentially updated every volume scan
- System Zdr Bias is updated after every volume scan.
 - Receiver bias is measured during retrace. It could change with every volume scan.
 - Transmitter bias is measured during every performance check, usually scheduled every 8 hours.
 - Antenna bias is measured and updated during installation and is not changed unless hardware affecting antenna bias is changed.

System Zdr Bias

- The following plot shows 24 hours of System Zdr Bias.
- Note the overall curve of the data showing that the System Zdr Bias is correctly compensating for temperature changes in the system.
- Note the change of less than 0.1 dB from VCP to VCP indicating a stable system.

Transmit Power Measurement

- The H and V transmit powers are measured during Performance check, usually every 8 hours.
- Note that the H and V transmit powers are close to the same value. But, they do not need to be exactly the same.
- Note the difference between H and V transmit powers remains fairly constant indicating stability in the power splitter and the built in test measurement hardware.

The CP Technique - 2

The equation for Cross-polarization Power Technique is:

$$Zdr \downarrow true = S \downarrow hh / S \downarrow vv = Zdr \downarrow meas * CP \downarrow xv / CP \downarrow xh * (Sun) 12$$

- Where
 - S_{hh} is the transmit/receive H during normal operations
 - S_{vv} is the transmit/receive V during normal operation
 - Zdr_{meas} is the measured Zdr that includes any bias introduced by the radar system
 - CP_{xv} is the clutter scan of transmit H, receive V
 - CP_{xh} is the clutter scan of transmit V, receive H
 - *Sun* is the measured sun bias which is equal for the co-polar and cross-polar measurements

Method introduced by Dr. John Hubbert: "Studies of the Polarimetric Covariance Matrix.

Part 1: Calibration Methodology", Journal of Atmospheric and Oceanic Technology, Vol 20, May 2003

Project Status

- Algorithm Delivered
 - by National Center for Atmospheric Research (NCAR)
 - NCAR providing continuous support to implementation
- Solar Scan Development In Progress
 - Implementing in software build 14.0
 - Potentially more robust than baseline reflector bias measurement
 - Expected to reduce calibration errors related to antenna
- Clutter scans more challenging
 - Antenna positioning precision/stability problematic
 - Difficulty returning to same clutter target volume between H and V scans
 - Violates algorithm reciprocity assumption
 - Modified scan strategy to mitigate pedestal performance impacts
 - Also developing data filtering methods to compensate
 - signal to noise ratio, coherency, and linear depolarization ratio

