Radar Thermodynamic And Wind Profiling

Phillip Chilson School of Meteorology & Advanced Radar Research Center University of Oklahoma

What should you expect to hear during this presentation?

- A discussion of wind and thermodynamic profiling methodologies with a focus on radar and wind profilers in particular
- What wind profilers provide in the way of dynamic and thermodynamic information
- Which parameters they not not so good at providing
- Which measurements are well suited to complement wind profiler observations

Strengths of Wind Profiling Radars

- Provide continuous measurements of the atmosphere in all weather conditions over a large range of heights
- 2. Provide 'gated' observations (not just linearly integrated observations) with relatively good spatial and temporal resolution.
- 3. Capable of supporting atmospheric research in a wide range of topic areas
- 4. Have been in operation for many years at a variety of geographic locations, so plenty of opportunities for data mining.

Wind Profilers

Wind Profilers

Coherent Clear-Air Scatter

For the case of Bragg scatter from clear-air turbulence, It is customary to assume that

$$P = C \frac{\eta}{r^2}$$
$$\eta = 0.379 \frac{C_n^2}{\lambda^{1/3}}$$

Here it has been assumed that the turbulence is:

- Homogeneous,
- Isotropic.
- Volume-filling, and
- Within the inertial subrange

Structure Function Parameters

The structure function parameter is give by

$$C_n^2 = \frac{\left< |n(r) - n(r + \Delta)|^2 \right>}{\Delta^{2/3}}$$
$$n - 1 = 77.6 \times 10^{-6} \frac{p}{T} + 0.3733 \frac{e}{T}$$

where*p* is pressure in hPa*T* is temperature in Ke is water vapor pressure in hPa

Neutral Atmosphere

Coherent Clear-Air Scatter

For the case of Bragg scatter from clear-air turbulence, one can also write

$$\eta = aL_o^{4/3} \frac{M^2}{\lambda^{1/3}}$$

$$M = \frac{dn}{dz} = \frac{\partial n}{\partial \Theta} \frac{d\Theta}{dz} + \frac{\partial n}{\partial q} \frac{dq}{dz}$$

Where

- *M* is the mean gradient of potential refractive index
- *a* is close to unity for our application
- L_o is the outer scale of turbulence

Kolmogorov Energy Cascade

Fresnel Scatter and Reflection

REFRACTIVE INDEX VARIATION An

Röttger & Larsen, 1990

Doppler Beam Swinging

- Beam is rapidly steered to three or more directions (phased array antenna)
- Radial velocity measured for each beam
- Wind field reconstructed from the radial velocities
- Wind field assumed uniform over the sampling volume

Doppler Beam Swinging

It is assumed that the wind field is uniform in space and time across the sampling volume

Spaced Antenna

- Radio waves transmitted and the backscattered signals recorded on three or more spatially separated antennas (or groups of antennas)
- The backscattered signals form a diffraction pattern that moves
 across the ground
- The speed of the diffraction pattern is measured and related to the wind speed

Interferometry

- Radio waves transmitted and the backscattered signals recorded on three or more spatially separated antennas (or groups of antennas)
- Assume that the backscatter primarily comes from a few scattering centers
- Use the time evolution of the phase differences between the echo power at the various receiver locations to measure the wind

Modular 449-MHz Profiler

Radio Acoustic Sounding System (RASS)

- Use radar to measure the propagation speed of sound
- Use an acoustic carrier frequency that produces structures that are Bragg matched with the radar
- Provides profiles of the virtual temperature

Radio Acoustic Sounding System (RASS)

Wind and temperature data collected by NOAA ESRL of the California coast

Multiple Receiver and Frequency Techniques

Atmospheric Radar Imaging

Atmospheric Radar Imaging

CRI (2D in angles) RIM (1D in range)

3D Imaging

Atmospheric Radar Imaging

Coherent Radar Imaging

The formation of *multiple receive beams* by digitizing the output of the receiving array elements and forming beams by means of a digital processor

Range Imaging (RIM)

Sum signals from multiple frequencies coherently

DAKRA

DAKRA

DAK RF

UMassAmherst

S-Band FMCW Radar

Dept. of Electrical & Computer Engineering

UMassAmherst

Microwave Remote Sensing Laboratory

FMCW

- 2.94 GHz single pol.
 - 2.4 m parabolic antennas
- 250 W peak/average TWTA
- 60 MHz bandwidth
- >2.5 m range resolution
- Primary targets: insects and refractive index turbulence
 - Tradeoff between range resolution, velocity range, and max range

Planetary Boundary Layer

- Can exhibit extremely complex flow on account of interactions with the Earth's surface
- Despite its relative proximity to the Earth, still difficult to monitor

Planetary Boundary Layer

In-Situ Instrumentation for PBL Research

SMARTSonde

Small Multifunction Autonomous Research & Teaching Sonde

SMARTSonde's maiden flight on March 15, 2009

March 6th Morning Transition Observations Sunrise: 6:53

March 6th Morning Transition Observations Sunrise: 6:53

Large Eddy Simulation

- Assign dynamic and thermodynamic variables to each grid cell
- Parameterize the turbulence within each grid cell
- Use prognostic equations to describe dynamics and thermodynamics at larger scales
- Initialize the LES based on measured values
- "Nudge" the LES based on measured values

LES Thermodynamic Fields

LES – UAS Comparison

LES $\log_{10}(C_n^2)$ -11 Height AGL (m) 200 200 200 -11.5 -12 -12.5 -13 -13.5 0 -14 19:00 20:00 19:10 19:20 19:30 19:40 19:50 Time UTC $UAV \log_{10}(C_n^2)$ -11 Height AGL (m) 1000 200 0 -12 -13 0 -14 19:00 20:00 19:10 19:20 19:30 19:40 19:50 Time UTC

Observations at Esrange, Sweden Swedish Space Corporation

Measurements of C_n^2

Measurements of M²

SITY of (

Additional Complementary Methods

- Microwave Radiometry
- Infrared Radiometry
- Lidar
- Dual-wavelength radar
- Global Navigation Satellite Systems
- Refractivity Methods
- Others ...

Summary

- Wind profilers are well suited for wind retrievals and to some extent can be used for direct and indirect estimation of thermodynamic parameters
- The prospects of thermodynamic retrieval is enhanced when complementary observations from other sources are used.

 Thermodynamic Profiling Technologies Workshop held in Boulder, CO (April 2011) NCAR/TN-488+STR NCAR Technical Note "Thermodynamic Profiling Technologies Workshop Report to the National Science Foundation and the National Weather Service" http://opensky.library.ucar.edu/collections/TECH-NOTE-000-000-853