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Radar and Dropsonde Analysis

We have developed a model-independent three-dimensional vari-
ational scheme (3D-VAR) to analyze airborne Doppler radar data
along with dropsonde observations (López and Raymond 2011).
The 3D-VAR scheme employs an efficient two-step process: (1)
Radar observations within each grid box are analyzed locally to
obtain estimates of particle velocity and the associated error co-
variance matrix. (2) A global variational scheme then uses these
data to compute a global wind field. The global penalty func-
tion incorporates all radar error covariance information as well as
dropsonde observations, imposes a strong mass continuity con-
straint, and contains horizontal and vertical smoothing terms. In
each grid box a local Cartesian reference frame is used in which
the error covariance matrix is diagonal, simplifying the incorpo-
ration of radar data into the 3D-VAR analysis. No hand editing
of radar data was done in this analysis.
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Vorticity Analysis

We present three examples of our analysis encompassing the de-
velopment of typhoon Nuri (2008) in the western Pacific. We
make a complete evaluation of the flux form of the vorticity
equation, resulting in the vorticity tendency as a residual. This
vorticity tendency is then integrated over the system to obtain
a circulation tendency as a function of height. This circulation
tendency reflects the true development of the system, which sup-
ports the reliability of our analysis scheme.

• The absolute vertical vorticity and storm-relative winds are
shown in the first row below.

• The second row shows the circulations, circulation tenden-
cies, and the vertical mass flux as a function of height.
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Vorticity Equation

The tendency for the vertical component of absolute vorticity is

∂ζz

∂t
= −∇h ·Z

where the horizontal flux of vertical vorticity is

Z = vhζz − ζhvz + k̂ × F = conv + tilt+ frict.

The wind is v = (vh, vz) and the absolute vorticity is ζ = (ζh, ζz) =

∇ × v + 2f k̂. The frictional force F is obtained from a simple
boundary layer model. The absolute circulation is

Γ =
∫
ζzdA.

All components of Z can be computed from the 3D-VAR analysis,
resulting in time tendencies of ζz and Γ.
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Track of Developing Typhoon Nuri (2008) (Raymond and
López 2011)
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Nuri 1 (16 Sept 2008: tropical wave) vorticity, wind, re-
flectivity, dropsonde locations, and flight track
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Nuri 2 (17 Sept 2008: tropical depression) vorticity, wind,
reflectivity, dropsonde locations, and flight track
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Nuri 3 (18 Sept 2008: tropical storm) vorticity, wind, re-
flectivity, dropsonde locations, and flight track
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Nuri 1 circulation, circulation tendency, vertical mass flux
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Nuri 2 circulation, circulation tendency, vertical mass flux
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Nuri 3 core circulation, circulation tendency, vertical mass
flux
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Conclusions

ELDORA plus dropsondes produces a detailed picture of the vor-
ticity evolution in tropical cylone Nuri. This picture can be used
to test conjectures regarding the process of tropical cyclogenesis.
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