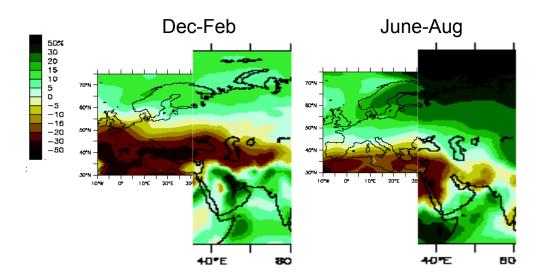


Projected Annual Average Precipitation: "2080-2099" minus "1980-1999"



There is a *robust* drying of the subtropics, 20-35N&S.

Stippling is where the multimodel average change exceeds the standard deviation of the models

IPCC AR4 2007

Projected Precip Changes in the Central Asia: "2080-2099" minus "1980-1999"

Drying in Central Asia and Southern Europe (~ 25% reduction of annual mean precip)

Scenario A1B

The recent 1998-2001 drought in the Central Asia

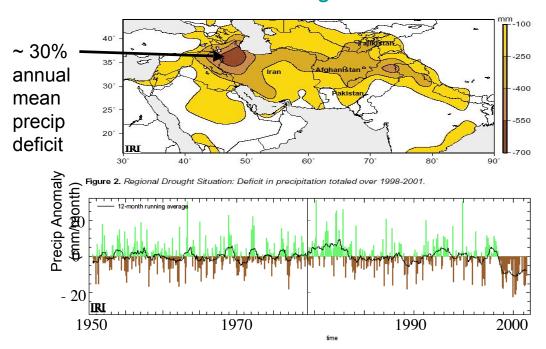


Figure 6. Precipitation Anomalies: Monthly precipitation departures from the historical average over Central and Southwest Asia (over 25N-42N; 42E-70E), from Jan. 1950 - Sep. 2001.

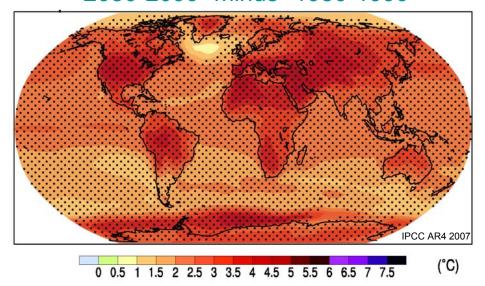
The recent 1998-2001 drought in the Central Asia

•Iran: 80% of livestock lost

35 - 75% reduction in wheat & barley

•Afghanistan: 40% of livestock lost

•Pakistan: 50% of livestock lost


•Tajikistan: 50% of grain crop lost

By the end of the century, similar *water* stress on agriculture will be the norm throughout the tropics and subtropics due to the *climate changes* associated with increasing CO_2 .

Projected JJA Average Surface Temperature Change:

"2080-2099" minus "1980-1999"

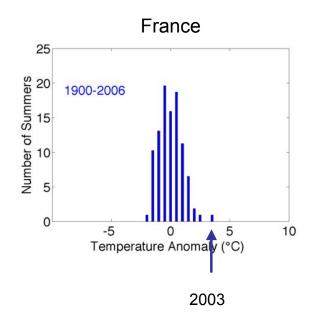
Average of 21 climate models forced by Scenario A1B. Multiply by ~1.2 for A2 and ~0.66 for B1

Extreme Heat in Western Europe in 2003: JJA temperature 3.6°C above normal

•France & N. Italy: 30,000 - 50,000 dead of heat stress

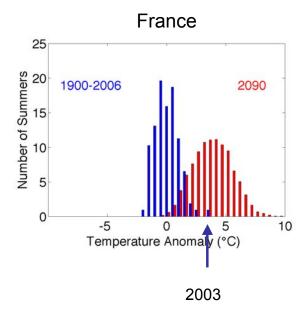
•Italy: 36% drop in maize yields

•France: 30% decrease in maize and fodder production


25% decline in fruit harvests

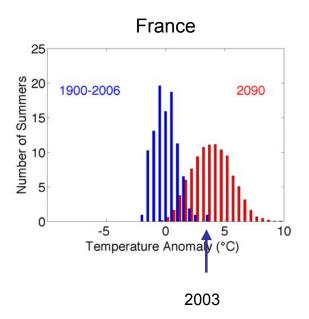
21% reduction in wheat yields

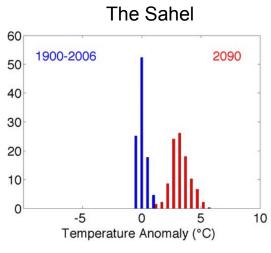
By 2100, years of similar *temperature* stress on agriculture will be the norm throughout the tropics and subtropics due to the summer *average* temperature changes.


Refs: UNEP 2007; Easterling 2007; Earth Policy Institute 2006; Eurosurveillence 2005

Growing Season Temperature

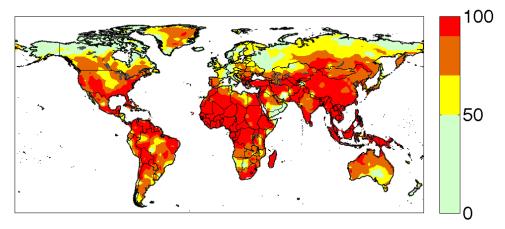
Observed JJA Temp (1900-2007)


Projections of Growing Season Temperature



Observed JJA Temp (1900-2007)

Projections use 22 climate models (IPCC AR4) forced by A1B Emission scenario. Variability taken from observations

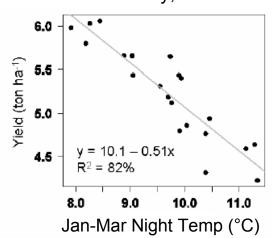

Projections of Growing Season Temperature

Projections of Growing Season Temperature

Likelihood of Summer 2090 warmer than warmest on record

By the end of the 21st Century it will be much hotter everywhere

In most of the tropics/subtropics, the seasonal average temperature will *very likely* exceed the warmest year on record


Battisti and Naylor 2009

Impacts of Climate Change on Food Security

Increasing temperature over the next 50 years will cause decreases in yield:

- Decrease in grain filling
- Decrease in spikelet fertility
- · Increased water stress
- Increased respiration (this case)

Important for all crops, but especially for wheat, rice and soybeans (nb, these are the C3 crops that would otherwise benefit from increased CO₂) and maize Wheat Yield in Yaqui Valley, MX

Lobell 2007

Impacts of Climate Change on Food Security

<u>Impacts of increased temperature (only):</u>

- Reduced yields of wheat, rice, maize and soybeans in the tropics/subtropics (equatorward of ~35° lat.)
 - Approximately -10% per 1°C warming
 - Est. reduction of 30-40% by 2100 in India, Africa, Middle East, Central America etc.
- Reduced nutritional content (especially protein in wheat and rice)
- Increased disease transmission rates
- Loss of water stored in snow pack and glaciers (e.g., Sierra, Himalaya)
 - Reduced duration of river supplied water, especially important for India and Bangladesh

Impacts of Climate Change on Food Security

By 2050, many countries in the subtropics will experience:

- Typically a 10 20% reduction in rainfall (northern and southern Africa, Caribbean, Middle East, etc.)
- Increased frequency, duration and intensity of drought

Impacts of changing precipitation:

- Reduced yields and in some places abandonment of staple crops (many of these regions are marginal for crops presently grown)
- Duration and intensity of monsoon (e.g., rice in Indonesia)
- Increase in flooding in midlatitudes and tropics (increase intensity of precipitation on drier soils)
- Leaching of nutrients in soil

Impacts of Climate Change on Food Security

Other impacts of climate change on agriculture

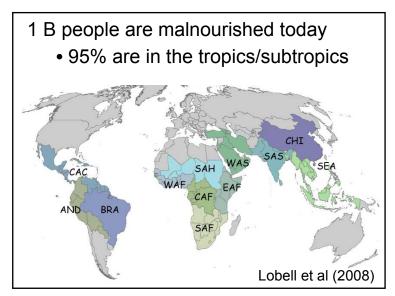
- Increased carbon dioxide and plants
 - Enhanced growth rate for some C3 plants (benefits limited to < 2030AD, and to the extratropics)
 - Including temperature increases due to CO₂, a large net negative impact in tropics/subtropics for all crops (C3 and C4)
 - Effects on plant pathology (reduced protein content and resilience to disease)
- Effects on soil BGC (fertility/water capacity)
- Sea level rise: about 35cm by 2100
 - salinization and loss of arable land
- Changes in pest and pathogens

Yield loss due to impact of climate change on pests

Climate Impact on insect crop damage, 2090 - 1990: wheat

Figure not available

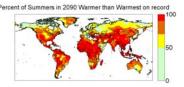
- Herbivory will change due to
 - increased metabolism (mainly): 40% in tropics, 50% in India and Russia, more than double in US
 - changes in pest fitness: increase in extratropics/decrease in tropics
- Net impact: more than double the yield loss due to impact on pests in extratropics (wheat, maize, rice)


(yield loss due to pests today is 5-50%)

Deutsch et al in prep.

Summary: World-wide impact on Crops

- By 2100, growing season temperatures will very likely exceed the warmest on record throughout the tropics and subtropics
 - 20-40% reduction in yields of major crops solely due to temperature stress alone (plant physiology)
- In subtropics, crops will be further stressed by reduced rainfall
- Increased CO₂ (fertilization) effect is small
 - About ~0 to 15% for doubling CO₂
- Pest and Pathogens


Where do the Food Insecure live?

Estimates: ~ 200M *more* people at risk of hunger by 2080 due to climate change

The food insecure

- depend heavily on agriculture for food and income
- live in regions where agriculture will be most stressed by global warming
- live in countries that have the greatest population growth rates

