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Outline _Ll

 CIMI: Comprehensive Inner Magnetosphere-lonosphere Model

Convection-Diffusion Model of Radiation Belts and Ring Current

+ lonospheric Potential Solver

 CIMI: Space Weather Applications
- plasma environment (e-: 1 keV —5 MeV; ions: 0.1 — 500 keV) at L ~ 2 to 10

- particle precipitation and currents at ionosphere
- Dst prediction

 Advances and Challenges



Modeling Approaches of Radiation Belts/Ring Current L. ®
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CIMI: Model Logic

Solar Wind, Dst, Kp, AE data
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[Mei-Ching Fok et al., 2014]



CIMI Prediction of Plasma Environment (100 keV e-) Ll
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CIMI Prediction of Plasma Environment (1 MeV e-) Ll
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CIMI Prediction of Electron Precipitation
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CIMI Predicts RB/RC Flux Along Satellite Paths
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CIMI Predicts RB/RC Flux Along Satellite Paths

Van Allen Probes
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CIMI Prediction of Dst L‘ .' ®

Observed vs CIMI Dst
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Advances and Challenges _LK

* Advances:
- transform CIMI transport equation to new coordinates with uniform grid
i.e., InE instead of E

- transform to new coordinates in which cross diffusion vanishes (J. Albert)

* Challenges:
- solving transport of relativistic particles with convection approach is challenging
- need to understand the sources of warm (0.1 — 1 keV) plasma

- reproducing fast initial recovery of Dst is difficult
- getting qualitative agreements with observations but not quantitative



