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Major CESM WACCM/WACCM-X Components

(modified to
consider species
dependent Cp, R,
m)
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Presentation Notes
Can be coupled with land, ocean, sea ice and other CESM components.


Key WACCM-X Capabilities

» Physics-based whole atmosphere general circulation model (0-700km)
» Solves dynamics, radiative transfer, photolysis and energetics

* Fully interactive chemistry, including ion chemistry.

* lonospheric electrodynamics using fully interactive dynamo

* lon transport in the F-region

» Magnetospheric inputs using empirical or specifications, including AMIE
» Coupling with a plasmasphere model (partnership with NRL)

* Whole atmosphere data assimilation for specification and forecast.
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Comparison with COSMIC 2008 June
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Comparison with COSMIC 2008 June
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ExB Drifts: WACCM-X vs Climatology
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MOnths of the Year

Variability of PRE and Equatorial Plasma Bubbles (EPB)

DMSP EPB Rates 1999 - 2002
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Introduce the coordinates.
Need to say something about connection between EPB and PRE.


Month

Month

Monthly Mean PRE Peak: WACCM-X and Obs.
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Monthly vs Daily Variability
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hPa

Variability of PRE and E-region Dynamo

Corr. Coef (Ime) Ion 155E Jul

PRE and E region UxPed, 155E

30
,_,, 25
-6 19 = )
10 22:, ”0 ﬁ :
— { B
Cn =i .
T 9 15 ! g
Nl 3 L
- '! S
AL e o B
S £
< 5 . L
10°f 1136 0 “20F o mmmmmmmmAFmT T S

st RN R T R S ]
—60 —40 =20 0 20 40 60
MLat (deq)

1 1 P Y I N R R |
5 10 15 20 25 30
Day of July

e Summer side E-region neutral wind variability at sunset
time strongly affects PRE variability.

e E-region is strongly affected by lower atmospheric waves.



Occurrence Frequency of Equatorial Plasma Bubbles

Deduced EPB Rates, 2000—2002 DMSP EPB Rates 1999 - 2002
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WACCM-X Data Assimilation: WACCM-X+DART
WACCMX+DART 300 km AW, (77°E, 8 N)
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Summary

e Key WACCM-X capabilities have been developed, and
validated against thermospheric and ionospheric
observations for both geomagnetically disturbed
periods and quiet periods.

 Simulated PRE, an important quantity for the formation
of EPB, shows longitudinal and seasonal variation
similar to observations.

e Simulated PRE varies significantly from day-to-day.
Deduced EPB rate is similar to observations.

— Large-scale dynamics/electrodynamics important for
preconditioning EPB.

— Feasibility of probabilistic forecast of equatorial space
weather events.
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