Developing Early Warning Forecasts of Hydrological Drought Onset, Duration,
and Intensity Across the Conterminous U.S. Using Machine Learning Models
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*Antecedent streamflow

*gridMET precipitation, maximum temperature, minimum temperature, standardized
precipitation-evaporation index, potential evapotranspiration

*University of Arizona Snow Water Equivalent

*NLDAS2 Soil moisture from 0-10cm, 10-40cm, and 40-100cm depths

*Static Variables including degree of regulation, forest cover, water use

Forecast meteorology variables being used:

*GEFS — temperature and precipitation forecasted 1-10 days in advance.

*NMME CFSv2 - temperature and precipitation forecasts 15, 45, 75, and 105 days out.
*SUBX ensemble mean - temperature and precipitation forecasts for 1-5 weeks out.
*ECMWF ensemble mean - temperature and precipitation forecasts for 1-5 weeks out.
*CPC - temperature and precipitation above, below, normal likelihood for 1-2 months.

Other model experimentation:

*Reservoir storage and outflow inclusion
Monthly public supply and irrigation water use
*Analog forecasting — using historical traces from observed hydroclimatology
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