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Glacial isostatic adjustment (GIA) is the solid Earth

response to the last ice age, which is constrained by iy
observations of

RSL at a site in North America was much higher 10000
years ago because the land was depressed
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a) relative sea level change at
paleoshorelines (e.g., RSL records),

b) present-day uplift (GNSS)
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d) polar motion (IERS)

Present-day snapshot of predicted and observed uplift rates
(Argus et al., 2021)




Motivation

1. Studies of GIA indicate that present-

day uplift rates require a weak™ lower
mantle

*6Xx more viscous than upper mantle
Cathles, 1971; Peltier et al., 2015
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2. Studies of mantle circulation and
seismic tomography indicate that the

static geoid requires a strong™ lower
mantle

*30-100x more viscous than upper mantle
Hager, 1984; Mao & Zhong, 2021
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Can accounting for 3D viscosity Iin
GIA models reconcile this
discrepancy?




Equatorial slice of the viscosity field

6 Models

Compute the GIA response of
6 viscoelastic Earth models
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*LVVs = lateral viscosity variations
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1. The misfit to global RSL records is
reduced by ~40% for models with a
strong lower mantle vs. those with
a weak lower mantle like VMba
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*RSL records from Peltier et al. (2015), Lambeck et al. (2017) Engelhart et al. (2012, 2015), Vacchi et al. (2018)
*GNSS uplift from Hammond et al (2016), Schumacher et al. (2018), Argus et al. (2021)
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Results

1. The misfit to global RSL records is
reduced by ~40% for models with a
strong lower mantle vs. those with
a weak lower mantle like VMba

2. If LVWVs are neglected or moderate,
then a strong lower mantle
significantly degrades the fit to
GNSS uplift rates (especially in
North America)

3. However, the GNSS-uplift rate
misfit becomes ~insensitive to
lower mantle viscosity if LVVs are
strong

= This means the misfit to RSL
records is significantly reduced
while the misfitto GNSS is
~unchanged for a strong versus
weak lower mantle, when LVVs are
strong
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*RSL records from Peltier et al. (2015), Lambeck et al. (2017) Engelhart et al. (2012, 2015), Vacchi et al. (2018)
*GNSS uplift from Hammond et al (2016), Schumacher et al. (2018), Argus et al. (2021)
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Regional trade-off in the North American uplift rate misfit

* The regional misfit to GNSS uplift rates increases by 30% from Case 1a (first column) to Case 2¢

(last column)

* However, Case 1a completely ignores LVVs

* Compared to Case 1b (third column) and Case 1c (fifth column) with moderate and strong LVVs,
respectively, the misfit increases by < 15%

* This suggests that a weak lower mantle is not necessarily preferred when LVVs are accounted for
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Why do strong LVVs make the misfit to GNSS insensitive to lower mantle viscosity?

* Strong LVVs produce strong variations in lithospheric thickness (T,)

Regionally averaged viscosity beneath North America
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* makes the GNSS-misfit insensitive to lower mantle viscosity




Effect on GRACE data

* We show the effect on the geoid rate from GRACE
for GIA based on the new preferred Case 2c
compared to the canonical model Case 1a

* The result may have implications for resolving the

GMSL budget misclosure problem (see my
GFOSTM talk from 2023)
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* We recommend that the target value of ], driven by GlA is -4.1 x
107" per year based on

* The early portion (1976-1992) of the satellite laser ranging time series
(Loomis et al., 2025), and

* Glacier mass loss (Rounce et al., 2023)

* ], from Case 1ais -3.2x10"" per year

* ], from Case 2c is -5.0 x 107" per year
* Both differ from the target value by ~20%




Conclusions

* The weak lower mantle inferred from GIA models can be
reconciled with the strong lower mantle inferred from mantle
circulation models by accounting for 3D viscosity

* Byincreasing the lower mantle viscosity and including strong
lateral viscosity variations, we can (compared to VM5a)

* reduce the misfit to global RSL records by 40% without degrading the
misfit to global GNSS uplift rates, and

* fit J, equally well

* While regional tradeoffs arise (uplift in North America), we suggest
these may be mitigated with additional model refinement




