On ocean tide background modelling during GRACE gravity field determination

<u>Christoph Dahle¹</u>, Roman Sulzbach¹, Markus Hauk¹, Torsten Mayer-Gürr²

¹GFZ Helmholtz Centre for Geosciences ²Graz University of Technology, Institute of Geodesy

GRACE-FO 2025 Science Team Meeting, online, 7-9 October 2025

Ocean tides in the context of GRACE

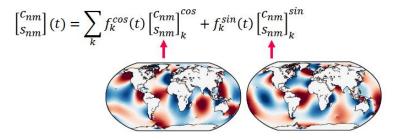
- Inevitable background model to reduce tidal signals from observations and minimize temporal aliasing errors
- Different global ocean tide models are available
 - Total number of contained tidal constituents may differ
 - Missing minor tides → interpolation using admittance theory is used
- Tests and model comparisons are usually performed by GRACE processing centers prior to each new release
- A crash course on ocean tides is provided in the EGU2023 presentation by Mayer-Gürr et al.¹, available at:

https://presentations.copernicus.org/EGU23/EGU23-13235_presentation.pdf

¹Mayer-Guerr, T., Oehlinger, F., Sulzbach, R., and Dobslaw, H.: Exploiting the full potential of ocean tide models for space geodetic techniques, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13235, https://doi.org/10.5194/egusphere-egu23-13235, 2023.

Current status regarding ocean tide models

- Only tidal atlases are provided by modellers
 - Mostly, conversion from gridded to spherical harmonic domain is required by users
 - Admittance implementation is also on user side
- Unclear formulas & definitions for non-experts, not straight forward
 - IERS conventions only for old FES2004
 - Complicated phase definition
 - Doodson-Warburg, needs additional tables
 - ambiguous definitions for S1 (164.556 or 164.555?), minor tides
- Each new ocean tide model requires adjustment of source code


New unified approach for tidal corrections

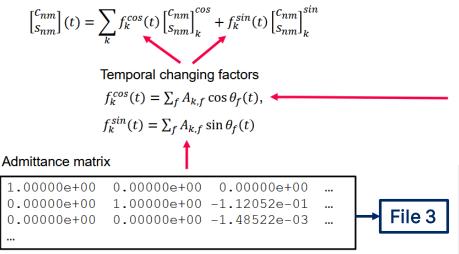
- Goal: Facilitate a user-friendly and model-independent framework for tidal corrections
- Dedicated webpage: https://www.tugraz.at/institute/ifg/downloads/ocean-tides
 - Current status of provided models:
 - 8 ocean tide models (GOT5.6, FES2022, FES2014b, TPXO10, EOT20, EOT11a, DTU23, TiME22) + 1 mixed ocean tide model (MIXED2025: GOT5.6 extended by FES2022 & TiME22)
 - 1 atmospheric tide model (TiME22)
 - Each model is represented by 3 files + additional files with Stokes coefficients for the corresponding tidal constituents
 - Reference implementations in MATLAB, Python and Fortran are provided, too

New unified approach for tidal corrections

Ocean tide synthesis at time t

Coefficients from the tidal atlas

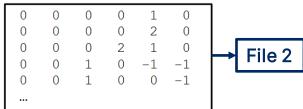
Standard ICGEM format (*.gfc)


```
eot20_055.565_om1_cos.gfc
eot20_055.565_om1_sin.gfc
eot20_055.575_om2_cos.gfc
eot20_055.575_om2_sin.gfc
eot20_056.554_sa_cos.gfc
eot20_056.554_sa_sin.gfc
...
File 1: Lise
```

File 1: List with names of *.gfc-files

New unified approach for tidal corrections

Ocean tide synthesis at time t



- All tidal lines are treated in the same way
- Flexible: different interpolation schemes, adding non TGP tides, equillibrium tides, resoncances...
- Fast

Phase arguments for all tidal lines

$$\theta_f(t) = \sum_{i=1}^6 D_{f,i} \, \beta_i \, (t)$$
 6 Doodson arguments

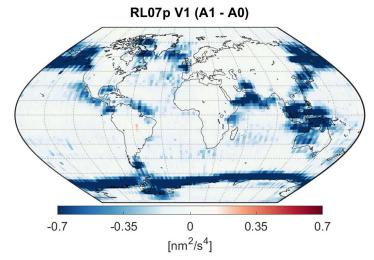
Matrix with Doodson multipliers

Do not care about

- Darwin names / Doodson codes
- Doodson-Warburg phase shifts

Results: Overview

- Proposed unified approach has been implemented in GFZ's EPOS-OC software
- Impact of different ocean tide models on monthly gravity field solutions is assessed based on GFZ RL07p V1 solutions (see GSTM2025 presentation by M. Hauk et al.)
- Assessment criteria:
 - Analysis of KBR post-fit residuals
 - KBR range-acceleration residuals are derived from range-rate residuals, filtered with a CRN filter with 10 mHz cut-off frequency (passband between 0.37 mHz or 2/rev. and 10 mHz), and binned onto a 3×3 degree global grid
 - Variance differences per bin are evaluated: $Var(res_{OT_Model_1}) Var(res_{OT_Model_2})$
 - Negative values: OT_Model_1 is better, positive values: OT_Model_2 is better
 - Ocean RMS of resulting gravity field solutions



- Systematic assessment using the following models (test year 2007):
 - Model A0: GOT5.6 without degree-3 tides (22 tides), no admittance
 - Model A1: A0, linear admittance for 331 tides
 - Model A2: A0 + 11 degree-3 tides from TiME22, linear admittance for 407 tides
 - Model A3: A2 + 5 HF-radiational tides from TiME22, linear admittance for 407 tides
 - Model A4: A3 + 13 minor tides from FES2022/TiME22, linear admittance for 390 tides
 - Model A5: A4 3 nonlinear minor tides from FES2022, linear admittance for 390 tides + 24 nonlinear tides

A0 vs. A1

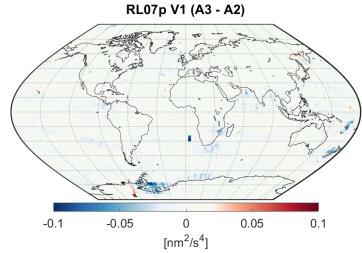
KBR range-acceleration post-fit residuals

Omitting minor tides by not applying admittance at all significantly deteriorates gravity field results

Month	Ocean RMS	[cm EWH]
WIOIILII	A0	A 1
2007/01	4.43	3.56
2007/02	4.64	3.60
2007/03	4.05	3.25
2007/04	4.60	3.58
2007/05	4.02	3.10
2007/06	4.36	3.29
2007/07	4.04	3.23
2007/08	3.78	3.00
2007/09	4.29	3.44
2007/10	5.00	3.48
2007/11	5.13	3.79
2007/12	4.13	3.32

A1 vs. A2

KBR range-acceleration post-fit residuals

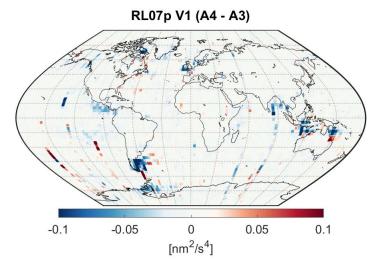


➤ Adding degree-3 tides from TiME22 slightly reduces global ocean RMS, but clearly improves modelling in various regions

Month	Ocean RMS	[cm EWH]
WOILLII	A1	A2
2007/01	3.56	3.44
2007/02	3.60	3.48
2007/03	3.25	3.20
2007/04	3.58	3.51
2007/05	3.10	3.06
2007/06	3.29	3.20
2007/07	3.23	3.15
2007/08	3.00	2.96
2007/09	3.44	3.40
2007/10	3.48	3.43
2007/11	3.79	3.75
2007/12	3.32	3.25

A2 vs. A3

KBR range-acceleration post-fit residuals

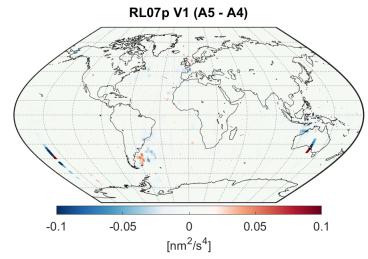


Additionally adding HF-radiational tides from TiME22 improves modelling, mainly in the Weddell Sea; global ocean RMS hardly affected

Month	Ocean RMS [cm EWH]		
WIOIILII	A2	A 3	
2007/01	3.44	3.44	
2007/02	3.48	3.48	
2007/03	3.20	3.20	
2007/04	3.51	3.51	
2007/05	3.06	3.05	
2007/06	3.20	3.20	
2007/07	3.15	3.15	
2007/08	2.96	2.97	
2007/09	3.40	3.40	
2007/10	3.43	3.43	
2007/11	3.75	3.74	
2007/12	3.25	3.24	

A3 vs. A4

KBR range-acceleration post-fit residuals



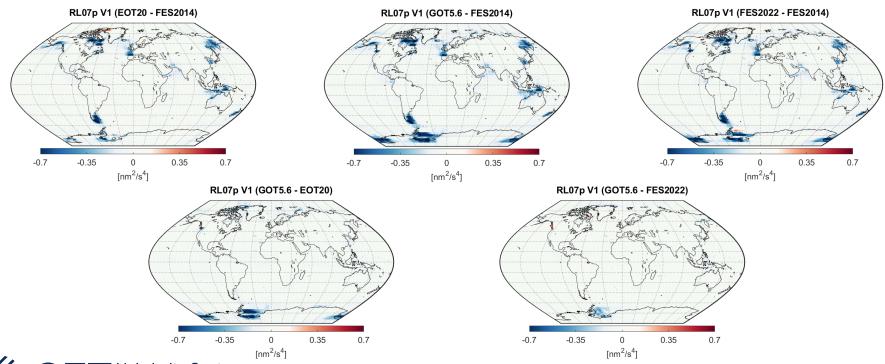
Adding more minor tides from models instead of interpolating them further improves modelling in some regions; global ocean RMS hardly affected

Month	Ocean RMS [cm EWH]	
WIOIILII	A 3	A4
2007/01	3.44	3.43
2007/02	3.48	3.43
2007/03	3.20	3.18
2007/04	3.51	3.47
2007/05	3.05	3.06
2007/06	3.20	3.21
2007/07	3.15	3.17
2007/08	2.97	2.95
2007/09	3.40	3.37
2007/10	3.43	3.42
2007/11	3.74	3.73
2007/12	3.24	3.20

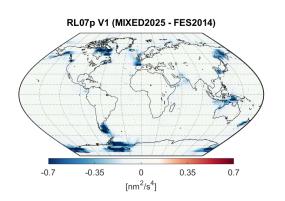
A4 vs. A5

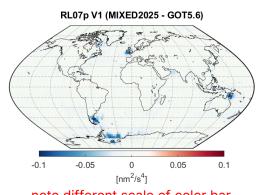
KBR range-acceleration post-fit residuals

Adding linear admittance also for nonlinear minor tides has no clear influence on modelling and gravity field solutions


Month	Ocean RMS [cm EWH]		
WIOIILII	A 4	A5	
2007/01	3.43	3.43	
2007/02	3.43	3.47	
2007/03	3.18	3.16	
2007/04	3.47	3.50	
2007/05	3.06	3.05	
2007/06	3.21	3.19	
2007/07	3.17	3.15	
2007/08	2.95	2.95	
2007/09	3.37	3.37	
2007/10	3.42	3.44	
2007/11	3.73	3.70	
2007/12	3.20	3.21	

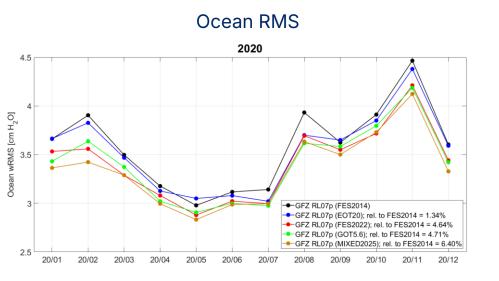
- Several ocean tide models have been tested for the years 2007 (GRACE) and 2020 (GRACE-FO)
 - Reference case: FES2014 (same model as used for GFZ RL06)
 - Original EPOS-OC ocean tide implementation incl. hard-coded admittance (limited number of only 54 interpolated tides)
 - New models tested: EOT20, FES2022, GOT5.6, MIXED2025
 - New ocean tide implementation based on unified approach


KBR range-acceleration post-fit residuals



GRACE-FO

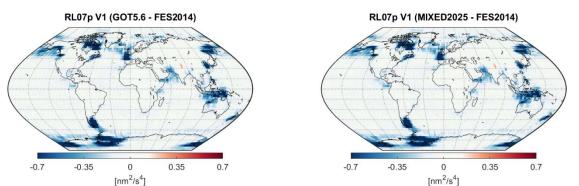
KBR range-acceleration post-fit residuals



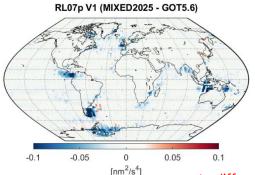
			_			
note	different	: scale	e of	CO	or	bar

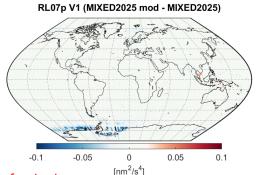
Model	σ of residuals [nm/s²]
FES2014	0.478
EOT20	0.448
FES2022	0.422
GOT5.6	0.410
MIXED2025	0.407

GRACE-FO

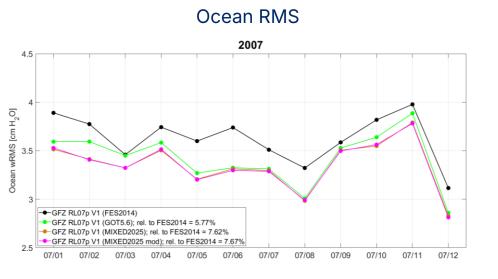


- All new models perform better than FES2014
- FES2022, GOT5.6 and MIXED2025 perform better than EOT20
- > FES2022 and GOT5.6 perform similar with advantages for GOT5.6 in the Weddell Sea
- MIXED2025 performs best in terms of smallest ocean RMS and also shows reduced residual variance in a few coastal regions compared to GOT5.6





KBR range-acceleration post-fit residuals


Model	σ of residuals [nm/s²]
FES2014	0.769
GOT5.6	0.691
MIXED2025	0.687
MIXED2025 mod	0.686

GRACE

- Conclusions are consistent with those from the GRACE-FO test year
- MIXED2025 again performs slightly better than GOT5.6
- Further investigations at GFZ revealed that small modifications of MIXED2025 lead to reduced residual variance in the Weddell Sea and off the coast of West Antarctica
 - Tidal constituents d3m1, d3n2, d3l2 and d3m3 are taken from TiME22 instead of GOT5.6 → all degree-3 tides are now from TiME22
- The model denoted here as MIXED2025 mod has been chosen for GFZ RL07

Summary

- New unified approach for tidal corrections during orbit and gravity field determination is proposed
 - User-friendly, model-independent, no expert knowledge of ocean tide theory required
 - Paper in preparation, goal is to become part of next IERS conventions
 - Your feedback is welcome!
- Implementation of this new approach in GFZ's EPOS-OC software in view of the GRACE/-FO RL07 reprocessing could already prove its benefits
 - Extended admittance scheme improves gravity field results
 - Ocean tide model comparisons can be performed without extra work needed to implement different new models
- Recommendation to use a mixed model to obtain best gravity field results

