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Research Objectives

1. Evaluate hydrological model performance

Assess and compare the ability of OS LISFLOOD and LSDM to reproduce TWS
variability in the world’s largest river basins, including seasonal, interannual, and
long-term signals.

2. Analyze spatial and climatic patterns
Investigate how model performance varies across latitudinal and hydroclimatic
zones and identify systematic strengths and weaknesses of each model.

3. Validate and extend reference datasets
Examine the consistency and applicability of satellite-based combinations
(SLR+GRACE, SLR+DORIS) as independent validation datasets in the pre-GRACE era
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OS LISFLOOD

Development :
and Purpose .
Key Features o

Applications
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Overview of the main processes included in OS LISFLOOD. The scheme is adapted
from https://ec-jrc.github.io/lisflood-model/2 01 stdLISFLOOD overview/
(last visited 24/9/2025).

Simulation of Terrestrial Water Storage (TWS) variability
Superior to LSDM (Dill, 2008) in capturing interannual signals (Jensen et al., 2025)
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I External validation data

SLR only (10x10)
(Gatdyn et al. 2024)

SLR + GRACE (60x60)
(based on Gatdyn et al. 2024)

SLR + DORIS (60x60)

(Locher et al. 2025)
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data from 1995 to December 2023 based on 8 geodetic satellites
splitting and re-stacking NEQ
published on ICGEM

data from 1995 to December 2023
different modeling approaches for each degree range, including fitting
annual/semiannual signals, stochastic pulses and extrapolation backwards

data from 1984 to December 2023.
use of empirical orthogonal functions (EOFs) from GRACE and GRACE-FO
combination SLR and DORIS observations
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https://icgem.gfz-potsdam.de/sp/04_SLR_/IGG_UPWr_SLR
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Share of signal power (%) by temporal band for monthly TWS anomalies in 100 largest
river basins. Boxplots summarize results for five datasets: OS LISFLOOD, LSDM, SLR 10x10

(SLR-only with, Gaussian 300km filter applied), SLR+GRACE (with DDK3 filter),

and SLR+DORIS (with Gaussian 300 km).

OS LISFLOOD and LSDM are predominantly seasonal,
with limited subseasonal variability.

The SLR-only solution (10x10) exhibits increased
subseasonal power and reduced seasonal dominance
due to draconitic/orbital aliasing and low spatial
resolution.

SLR+GRACE, SLR+DORIS improve signal-to-noise ratio
by rebalancing the spectrum towards the seasonal band,
reducing subseasonal variability, and enhancing spatial
resolution.

Patterns stable across both periods, confirming the

robustness of the conclusions regardless of the record
length.
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OS LISFLOOD performance vs SLR only (1995-2024)
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OS LISFLOOD performance vs SLR only (1995-2024)

detrended interannual 1:00
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® The centered modified Kling-Gupta-Efficiency (cKGE) shows positive values for all basins,
indicating good agreement with SLR data, with slightly lower performance for interannual signals
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OS LISFLOOD performance vs SLR only (1995-2024)
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® The centered modified Kling-Gupta-Efficiency (cKGE) shows positive values for all basins,
indicating good agreement with SLR data, with slightly lower performance for interannual signals

| SLR-only is consistent with OS LISFLOOD, but for global validation,
a model with higher spatial resolution is needed.
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OS LISFLOOD vs LSDM (1995-2022)
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® Both SLR+GRACE and SLR+DORIS
show consistent patterns, confirming
OS LISFLOOD's robustness compared
to LSDM
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OS LISFLOOD vs LSDM (1995-2022)
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Scatter plot of cKGE for the (a) detrended signal and (b) interannual signal of the 100 largest
river basins (sorted by mean latitude), evaluated against SLR+GRACE and SLR+DORIS. Green
dots denote OS LISFLOOD and orange dots denote LSDM. Horizontal dashed lines indicate the

7 / 11 median cKGE values across all basins (given in parentheses in the legend).
WROCEAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES



OS LISFLOOD vs LSDM (1995-2022)
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OS LISFLOOD vs LSDM (1995-2004)
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OS LISFLOOD vs LSDM (1995-2004)
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OS LISFLOOD vs LSDM (1995-2004)
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OS LISFLOOD vs LSDM (1995-2004)
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® The consistency between SLR+GRACE and SLR+DORIS models
highlights the robustness of the OS LISFLOOD model, with

improved performance in some regions compared to LSDM
during the 1995-2004 period. o
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Conclusions

_LAGEOS-2

1. OS LISFLOOD outperforms LSDM
OS LISFLOOD better captures large-scale TWS variability, especially
seasonal and interannual signals in tropical and subtropical basins.

2. Robust performance in the pre-GRACE era
Strong agreement with SLR+GRACE and SLR+DORIS confirms that
OS LISFLOQD reliably reproduces interannual TWS variability before GRACE.

3. Geodetic and hydrological relevance
The improved consistency of OS LISFLOOD with independent gravimetric estimates
highlights its value for geodetic applications and long-term water cycle reconstructions.

4. Regional limitations of both models (1995-2004)
At high latitudes and in arid regions, both models struggle to reproduce TWS variability,
often yielding negative NSE values and underestimating amplitudes of interannual changes.
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Evaluation Metrics

For the quantitative evaluation of model-observation agreement we use the cKGE, i.e., the bias-insensitive variant of modified Kling-Gupta-Efficiency (KGE’,
Gupta et al., 2009; Kling et al., 2012). Prior to comparison, each time series is demeaned to remove constant offsets; thus, the mean-bias term f = ug/u, is
effectively set to 1. The resulting metric combines correlation and variability components,

cKGE =1—/(r — 1)2 + (a — 1)2
where 7 is the Pearson correlation coefficient between simulated (s;) and observed (0;) anomalies,

r= Z (Si - .us)(oi - .uo)
JZ (i — )2 Y (07 — p1o)?

and a quantifies the variability ratio, a = ?
o

With demeaning, the variability term of KGE' based on coefficients of variation ( y ) reduces to the standard-deviation ratio («), making the adopted
formulation equivalent to KGE’ with 8 = 1. The metric attains its optimum at cKGE = 1, indicating perfect correlation and matched variability.

A widely used performance metric in hydrology is NSE (Nash & Sutcliffe, 1970) that measures the predictive skill of a model relative to the mean of
observations. NSE is defined as:

Y (0; —s)?
Zi (0; — 0)? '

NSE =1 —

where oi are the observed values, si the simulated values, and o An NSE of 1 corresponds to perfect agreement, values between 0 and 1 indicate that the
model outperforms the mean of observations, while negative values imply that the mean of observations is a better predictor than the model.
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