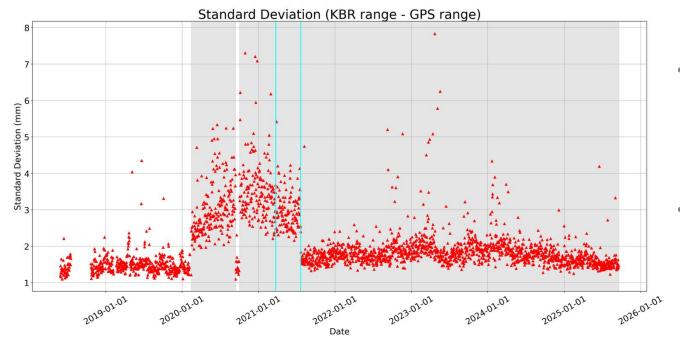
# GRACE and GRACE-FO Level-1 V04 Data Processing Status

Christopher McCullough on behalf of the

Science Data System Team from JPL, CSR, GFZ, and GSFC

NASA Jet Propulsion Laboratory
California Institute of Technology

2024 GRACE/GRACE-FO Science Team Meeting October 7, 2025




Jet Propulsion Laboratory
California Institute of Technology



## Level-1 Performance Metrics Inter-Satellite Range Difference





- updates mitigate impacts of GPS Flexpower (grey regions)
- Performance has ample margin for science data products (Level-2/3)

All Level-1 performance metrics continue to exhibit high quality



#### **Accelerometer - Status**



#### GF1:

- nominal performance (impulse response issues), no changes
- Operating in NRM (Normal Range Mode)

#### GF2:

- Performance degraded shortly after launch, with highly correlated noise across all accelerometer axes
- Current operations continue in NRM, persisting noise features

Calibrated Level-1 ACT data product, for GF1, consisting of:

- Outlier detection and removal
- Thruster modeling

Hybrid transplant ACH data product, for GF2



#### Accelerometer – ACX2 Bundle



#### GF2 accelerometer data is available in the ACX2 bundle:

- Continues to include processing designed for optimal use in wide-pointing mode
- Thruster modeling includes values regressed against the spacecraft regulator pressure differential (version 1)

#### The ACX2 bundle includes:

- AC0 thruster model (version 0 no regulator pressure regression)
- AC1 thruster model (version 1 regulator pressure regression)
- ACH final combined product to be used for Level-2 processing



#### **Accelerometer - Summary**



- The current calibrated accelerometer product for GF2 is the ACH1B product (currently publicly available within the ACX/ACX2 bundles)
- The ACX for fine pointing, ACX2 for wide-pointing months:

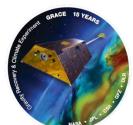
| ACX               | ACX2             | ACX              | ACX2             |
|-------------------|------------------|------------------|------------------|
| Launch - 22/12/31 | 23/1/1 – 23/2/28 | 23/3/1 – 23/6/30 | 23/7/1 - present |

- Development utilizes GF2 data in an effort to provide a robust calibration that will continue to provide high quality results as the spacecraft environment evolves
- Subsequent releases will incorporate further analysis and optimally calibrate the accelerometer data for use in diverse spacecraft environments



#### Reprocessing Overview – (v05/RL07)




- Reprocessing of GRACE/GRACE-FO Level-1 data is called version 'V05'
- Corresponding Level-2 reprocessing will be called RL07
- GRACE
  - Goal is to judiciously reprocess GRACE with the same software and configuration used for GRACE-FO to ensure consistent, stable, long-term multi-mission Climate Data Record
  - Initial reprocessing and validation, at Level-1/2, with IGS20, has been performed for 2004-2016
  - Planned to be completed by the end of 2025
- GRACE-FO
  - Software updates and initial reprocessing in progress
  - Planned to be completed in Spring 2026



#### **GRACE** Reanalysis Overview – (v05/RL07)



- This is planned to be the final Level-1 reprocessing for GRACE (excluding future ACC transplant improvements) and processed as version 'V05'. It includes:
  - Improved precision orbit determination
    - Transition to IGS20 (seasonal geocenter should improve the dynamic modeling)
    - GPS data editing
    - Increased GPS processing data rate
    - Updated antenna maps
  - Updated SCA time tag correction
  - Improved ACC transplant data (utilizing lessons learned from GRACE-FO)
- Level-2 processing will be released as RL07 see SDS Level-2 talks





#### **GRACE** Reanalysis Status – (v05/RL07)

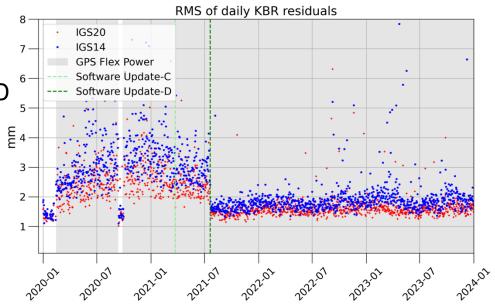


#### Level-1

- Complete processing of GPS POD data to estimate new antenna maps consistent with IGS20
- Nearing completion processing of the nominal mission (2004-2016)
- In progress processing of the non-nominal mission (2002-2003 and 2016-2017)
- In progress testing of ACC transplant updates

#### Level-2

- In progress validation of final Level-1 processing
- Complete optimization of Level-2 processing strategies (gravity field improvements are evident in RL06 to RL07) – see SDS Level-2 talks
- Complete updated background modeling see SDS Level-2 talks




#### **GRACE-FO** Reanalysis Status – (v05/RL07)



#### Level-1

- Homogenize the entire POD time series with IGS20
- Update ACH processing (reanalysis of accelerometer characteristics throughout the mission)
- Update LRI processing
- Provide HRT (high resolution thermistor) data
- Other minor improvements and optimizations



#### Level-2

 Processing strategies, parameterization, and background model updates consistent with GRACE RL07





## Thank you!!

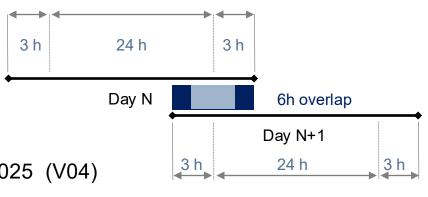




### Back-Up & More Detail



#### **KBR / GPS POD / USO Performance**

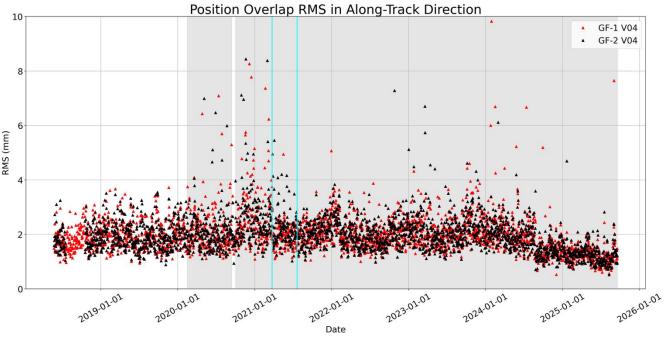



Time

#### Performance Metrics:

- 1) Spacecraft trajectory comparison between overlapping consecutive orbit arcs
- 2) Spacecraft clock synchronization on overlapping arcs
- 3) (KBR GPS) range difference
- 4) USO frequency stability

GRACE-FO: May 28, 2018 - Sep, 18 2025 (V04)





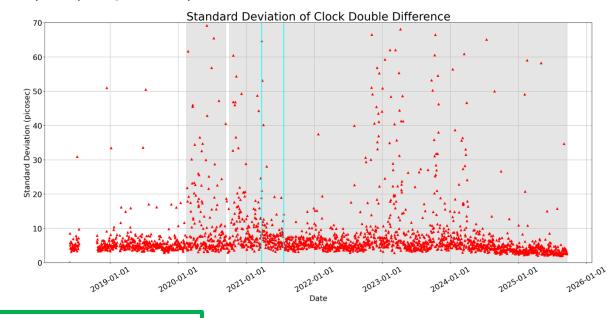

#### **GPS POD: Orbit Overlaps**



- 2021 software updates mitigate impacts of GPS Flex-power (grey regions)
- Performance has ample semandin for science data products (Level-2/3)
- Small improvement in quality after the switch to IGS20



Performance continues to exhibit high quality




#### **Clock Performance**



Spacecraft clock synchronization on overlapping arcs: direct measure of our relative time error:  $(Clk_C - Clk_D)_1 - (Clk_C - Clk_D)_2$ 

- 2021 software updates mitigate impacts of GPS Flex-power (grey regions)
- Increased solar activity has increased volatility.
- Ample margin for science data products (Level-2/3).



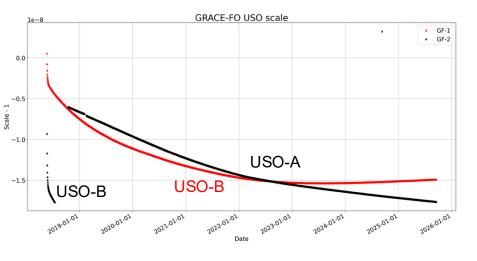
**High quality performance satisfies requirements\*** 

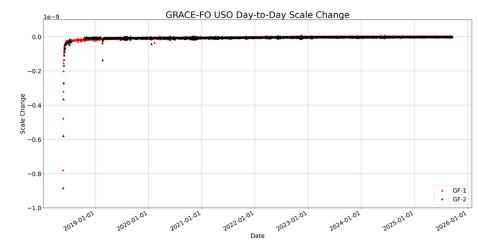
\*Requirement: < 150 ps (≈ 0.5 micron)



#### **USO Frequency Stability**




GRACE-FO USO nominal frequencies:


GF-1:  $f_0 = 4.832000e6 Hz$ 

GF-2:  $f_0 = 4.832099e6 Hz$ 

USO frequency scale =  $\frac{\text{nominal freq.}}{\text{determined freq.}}$ 

USO frequency continues to be stable to much better than 1 part per billion







#### **Attitude Reconstruction - Sensors**



#### 1) Star Cameras

- 3 star camera heads
- provides absolute attitude with respect to the inertial frame
- 2) Inertial Measurement Unit (IMU)
  - 4 fiber optic gyroscopes (as planned, gyro 4 turned off on 2019-03-13)
  - relative attitude in terms of angular rates
- 3) Accelerometer
  - > relative attitude in terms of angular accelerations
  - not used for attitude data fusion on GRACE-FO

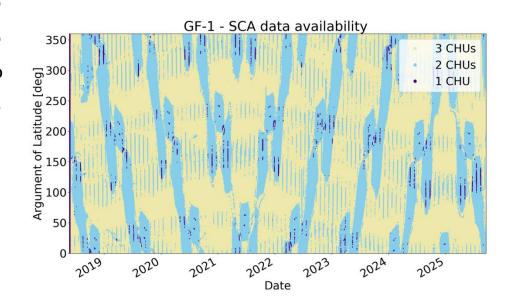
- LRI Fast Steering Mirror (LSM LRI FSM)
  - > relative attitude in terms of pitch/yaw pointing angles
  - has been tested for attitude data fusion – not operational
- 5) Magnetorquers (MTQ)
  - relative attitude in derived angular accelerations
  - Used operationally (for ACC data processing only)



#### **Attitude Reconstruction – SCA Data Availability**



#### Valid SCA data availability over the mission lifetime:


3 camera head units: 74.2 %

2 camera head units: 25.7 %

• 1 camera head unit: 0.1 %

0 camera head units: 0.0 %

SCA data availability continues to meet expectations and performs well

