What can space physics education learn from physics education research?

Ramon E. Lopez
Department of Physics, The University of Texas at Arlington, Texas, USA, relopez@uta.edu

This work is supported by a subcontract from the NASA Heliophysics Education Consortium to Temple University and the AAPT under NASA Grant/Cooperative Agreement Number NNX16AR36A.
What is PER?

- The study of issues in teaching and learning of physics with a significant literature base
- Done mostly in physics departments by physicists
- A recognized field of physics (APS, 1999), with grants, Ph.D. students, peer-reviewed journals
- Heavy emphasis on developing instruction that quantitatively improves student outcomes
- Some PER is actually applied cognitive science
Experts and novices

Research has been done into the difference between experts and novices [Chapter 2 of *How People Learn*, 2000].

The main difference is the way that knowledge is organized.

Novices focus on surface features of the problem while experts focus on conceptual relationships that organize knowledge.
Group the Problems (After Chi et al., 1981)

1) Calculate the speed of the mass M at the bottom of the ramp (no friction)

2) Calculate the distance the spring stretches when the mass M hangs without moving

3) Calculate the coefficient of friction of the ramp so that the mass M does not slide
Novices
...will group problems 1 and 3 together because they both deal with a mass on an inclined plane. Problem 2 is a spring problem.

Experts
...will group problems 2 and 3 together because they are both statics problems. Problem 1 is a conservation of energy problem.
Active Learning Techniques

- They often target known misconceptions
- They draw on the cognitive research base
- It doesn’t just mean “We do labs”
- They don’t have to be “hands-on”
- Examples include the McDermott “Tutorials”, SCALE-UP, and active lecture - Peer Instruction [Mazur, 1997]
- These innovations are portable and reproducible [Finkelstein & Pollock, 2005]
Values are valuable!

More lasting and important than factual content knowledge

Even very able pupils dislike and opt out of S&T in schools and as careers – in particular girls!

Young people do not choose S&T careers because it is good for the national economy!

In (post)modern societies: Choices are based on values, motifs, interests and 'self realization'.

The need for studies that address the affective domain;

Motivation, interest, attitudes, values, perceptions of science and scientists etc.

ROSE in brief

- Standard survey methods (with its strengths and weaknesses!)
- Target population: 15 year-olds in schools
- Representative sample (N> 1000) in each country
- Some 10 PhD (+many MA students) students base their thesis on ROSE data
All ROSE items have the following format:

A. What I want to learn about

How interested are you in learning about the following?
(Give your answer with a tick on each line. If you do not understand, leave the line blank.)

<table>
<thead>
<tr>
<th></th>
<th>Stars, planets and the universe</th>
<th>Not interested</th>
<th>Very interested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chemicals, their properties and how they react</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The inside of the earth</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>4</td>
<td>How mountains, rivers and oceans develop and change</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>5</td>
<td>Clouds, rain and the weather</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>The origin and evolution of life on earth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROSE-articles:
www.ils.uio.no/english/rose

Other articles Sveins home page
http://folk.uio.no/sveinsj/
ROSE results vs level of development?

(HDI = Human Development Index, a composite score for the level of development)

I would like to become a scientist vs. HDI

R = -0.93

R Sq Linear = 0.866
Interest profile (108 items!):

- **In poor countries:**
 Pupils want to learn about ‘everything’

- **In richer countries:**
 Pupils are more selective, and strongly gendered profile:
 - Traditional school science’ at the bottom
 - **Girls:** biology and health,
 - **Boys:** Explosives, engines, machines
 - **Top priority for both:**
 The philosophical, the unsolved mysteries, space science
What about University students, especially STEM majors?

Do they have the same interest in space science?

Can we use this as an effective vehicle for motivating a broad range of physics topics?

NASA funds the NASA Space Science Education Consortium (Alex Young, PI) at Goddard Space Flight Center. Various projects are supported by the NSSEC, including one managed by the AAPT to develop PER-based materials with a space science context.
NASA/AAPT Team Organizations
Temple University
American Association of Physics Teachers

NASA/AAPT Team Members
Ramon E. Lopez, University of Texas at Arlington, lead
Janelle M. Bailey, Temple University
Rebecca Vieyra, AAPT (ex) and OAS
Ximena Cid, California State University Dominguez Hills
Brad Ambrose, Grand Valley State University
Shannon Willoughby, Montana State University

This team has expertise in astronomy and physics education research, heliophysics content, and access to post-secondary classrooms to field test all materials.
Preservice teacher lab on Eclipses

Other topics include:
• Auroral Currents Tutorial (application of Ampere’s Law)
• Orbits and eclipse concept questions (angular momentum, energy in orbits)
• Tracking a CME (kinematics)
• Sunspot cycles (oscillations)
CME activity for Modern Physics

- Students used SOHO observations to determine the arrival time at L1 of solar energetic protons.

- They then used relativistic kinematics to determine when the particles would have left the Sun.

- Assuming the particles were accelerated at an interplanetary shock, the students identified the position of the shock using coronagraph images to determine how far away from the Sun the particles were accelerated.

- The activity was field-tested in class with students working in groups.
<table>
<thead>
<tr>
<th></th>
<th>This activity helped me learn how to use the formula for determining relativistic momentum and velocity</th>
<th>I found the use of a space science example for relativistic particle motion interesting</th>
<th>I would like to see more space science examples to used to teach basic physics concepts</th>
<th>I would like to see more space science examples to used to teach advanced physics concepts</th>
<th>Working with a partner and collaborating on problem solving helped me understand the material better than a traditional lecture on the material</th>
<th>Working with a group in class on the problem helped me understand the material better than solving homework problems on my own</th>
<th>I am interested in learning about space science content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>3.154</td>
<td>4.385</td>
<td>4.154</td>
<td>4.269</td>
<td>3.654</td>
<td>3.385</td>
<td>4.615</td>
</tr>
<tr>
<td>StDev:</td>
<td>1.190</td>
<td>0.637</td>
<td>0.925</td>
<td>0.874</td>
<td>1.263</td>
<td>1.329</td>
<td>0.697</td>
</tr>
<tr>
<td>N:</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>P-value</td>
<td>0.5097</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0083</td>
<td>0.1400</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
PER has provides a research base as a guide for developing high quality instruction, and it has proved useful (CISM summer school, Lopez and Gross [2008]).

NASA is supporting an AAPT team to create research-based undergraduate instructional materials for physics with space science themes.

Future topics will include astrobiology themes.

http://aapt.org/resources/SSEC/