Solutions to Problems 1-3

Problem 1

(a) Dropping the radiation term yields a partial differential equation (PDE) that can be solved using the method of separation of variables:

\[m_n c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial s} \left(T^{5/2} \frac{\partial T}{\partial s} \right) \]

For an ideal gas at constant pressure \(n = n_0 T_0 / T \), so the PDE for \(T \) becomes

\[\frac{m n_0 T_0 c_p}{\lambda} \frac{\partial T}{\partial t} = T \frac{\partial}{\partial s} \left(T^{5/2} \frac{\partial T}{\partial s} \right) \]

Setting \(T(s, t) = f(t) g(t) \) yields:

\[\frac{c_p m n_0 T_0}{\lambda} f^{-9/2} \frac{df}{dt} = \frac{d}{ds} \left(g^{5/2} \frac{dg}{ds} \right) = K \]

where \(K \) is the separation constant. Solving the ODE for \(f \) gives

\[f = \left(C_1 - \frac{7K \lambda}{2 c_p m n_0 T_0} t \right)^{-2/7} \]

where \(C_1 \) is a constant of integration. Solving the ODE for \(g \) gives

\[g = \left(\frac{7}{4} K s^2 + C_2 s + C_3 \right)^{2/7} \]

where \(C_2 \) and \(C_3 \) are also constants of integration. The solution for \(T \) is therefore

\[T(s, t) = \left(C_1 - \frac{7K \lambda}{2 c_p m n_0 T_0} t \right)^{-2/7} \left(\frac{7}{4} K s^2 + C_2 s + C_3 \right)^{2/7} \]

To evaluate the three integration constants, \(C_1, C_2, \) and \(C_3 \) we use the three conditions:

\[T(0, t) = 0; \quad \frac{\partial T(s, t)}{\partial s} \bigg|_{s=L} = 0; \quad T(L, 0) = T_0. \]

The first condition gives \(C_1 = 0 \), the second condition gives \(C_2 = -7KL/2 \), and the third condition gives \(C_1 = -(7/4) KL^2 T_0^{1/2} \). Substitution of the values into the above
expression yields the solution given in part (a) of the problem. The value of \(K \) is not needed, because it cancels out of the equations. The cancellation occurs because of the problem’s relatively simple initial and boundary conditions.

(b) In the absence of thermal conduction

\[
\frac{m_i c_p}{\partial t} \frac{\partial T}{t} = -n \chi T^\alpha = -n_0 T_0 \chi T^{\alpha - 1}.
\]

Setting \(\alpha = -1 \), and integrating yields the solution:

\[
T = T_0 \left(1 - 3 \frac{t}{\tau_{R0}} \right)^{1/3}; \quad \tau_{R0} = \frac{c_p m_i T_0^2}{n_0 \chi}.
\]
The key difference between conductive and radiative cooling is that conductive cooling becomes slower as the temperature decreases while radiative cooling becomes faster. Given enough time, radiative cooling will eventually dominate, no matter how slow it is initially.

(c) The initial (i.e. linear) conductive and radiative cooling times for these values are:

\[\tau_{C0} = 1.23 \text{ s} \quad \text{and} \quad \tau_{R0} = 1.55 \times 10^5 \text{ s} \quad \text{with} \quad \frac{\tau_{R0}}{\tau_{C0}} = 1.27 \times 10^5. \]

Initially the radiative cooling is more than a hundred thousand times slower than the conductive cooling.

(d) At the loop top

\[T = T_0 \left(1 + \frac{7}{2} \frac{t}{\tau_{C0}} \right)^{-2/7} \]

so the local, nonlinear cooling time there is

\[\tau_C = \tau_{C0} \left(1 + \frac{7}{2} \frac{t}{\tau_{C0}} \right) = \tau_{C0} \left(\frac{T}{T_0} \right)^{-7/2} \]

The local, nonlinear radiative time is

\[\tau_R = \tau_{R0} \left(1 - \frac{3}{2} \frac{t}{\tau_{C0}} \right) = \tau_{R0} \left(\frac{T}{T_0} \right)^3 \]

The two cooling times are equal when

\[\frac{T_{sw}}{T_0} = \left(\frac{\tau_{R0}}{\tau_{C0}} \right)^{-2/13} \]

where \(T_{sw} \) is the temperature where the switch over occurs. For pure conductive cooling, the switch over time, \(t_{sw} \), is

\[\frac{t_{sw}}{\tau_{C0}} = \frac{2}{7} \left[\left(\frac{\tau_{R0}}{\tau_{C0}} \right)^{7/13} - 1 \right] \]

The plasma has to cool by about a factor of 6 before radiative cooling becomes important, i.e.

\[\frac{T_0}{T_{sw}} = 6.10, \]

corresponding to a temperature of \(T_{sw} = 4.92 \times 10^6 \text{ K} \). The time of the switch over is
Thus, when a heated loop disconnects from the reconnection site, it only takes about three minutes before radiative cooling starts to dominate.

Problem 2

The x and y components of Faraday's equation are:

\[
\frac{\partial B_x}{\partial t} = \frac{\partial E_z}{\partial y} \quad \text{and} \quad \frac{\partial B_y}{\partial t} = -\frac{\partial E_z}{\partial x}.
\]

Using Leibniz's rule (also known as the fundamental theorem of calculus), we can write the x component of Faraday's equation as

\[
E_z(0, y) - E_z(0, 0) = \frac{\partial}{\partial t} \int_0^{y_0} B_x(0, y) \, dy - B_x(0, y_0) \dot{y}_0
\]

where y_0 is the location of the x-line. Because the field is line-tied at $y = 0$, $E_z(x, 0) = 0$. Also by definition $B_x(0, y_0) = 0$ and $E_z(0, y_0) = E_0$. Consequently,

\[
E_0 = \frac{\partial}{\partial t} \int_0^{y_0} B_x(0, y) \, dy
\]

Similarly, along the x-axis, we have

\[
E_z(0, 0) - E_z(0, x_0) = 0 = \frac{\partial}{\partial t} \int_0^{x_0} B_y(0, x) \, dx - B_y(0, x_0) \dot{x}_0
\]

Since the magnitudes of the magnetic flux between $y = 0$ and y_0 and between $x = 0$ and x_0 are equal, we obtain

\[
\dot{x}_0 = \frac{E_0}{B_y(x_0, 0)}
\]

Problem 3

Substitution into the expression in Problem 1 yields:

\[
x_0 = \frac{dx_0}{dt} = \frac{E_0}{B_0 a^3} \frac{(x_0^2 + a^2)^2}{x_0}
\]

which upon integration yields:
\[-(1 + x_0^2/a^2) = t/\tau_A + \text{constant}\]

where \(\tau_A = B_0 a/(2E_0)\). Since it is assumed that \(x_0 = 0\) at \(t = 0\), the value of the constant is \(-1\). So the solution for \(x_0\) is

\[x_0 = a \sqrt{t/(\tau_A - t)}\]

and the solution for \(\dot{x}_0\) is

\[\dot{x}_0 = (a/2\tau_A)(\tau_A/t)^{1/2}(1 - t/\tau_A)^{-3/2}\]

The corresponding plot for \(x_0\) and \(\dot{x}_0\) is:

![Plot](image)

The separatrix distance \(x_0\) becomes infinite at \(t = \tau_A\) because all of the flux passing through the surface has reconnected by this time. The separatrix speed, \(\dot{x}_0\), is infinite at both \(t = 0\) and \(t = 1.0\) when \(B_0(x_0, 0)\) is zero. A minimum separatrix speed of \(8/(3\sqrt{3}) (a/\tau_A)\) occurs at \(t = \tau_A/4\).