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T. G. Forbes (2010) 
 
Problem 1.  The figure below shows a steady-state configuration where anti-parallel field 
lines (solid lines) merge and annihilate at the y = 0 plane.  The annihilation is driven by 
an imposed stagnation-point flow (dashed lines). 

Resistive MHD Equations 
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The stagnation-point flow u is prescribed by: 
 

u!!=!!–ky! ŷ!!+!!kx!x̂!,  
 
and the magnetic field has the form 
 

B(x,!y)!!=!!Bx (y)!x̂!,  
 
where k is a constant and Bx(y) = – Bx(–y). 
 
(a)  Use the resistive MHD equations listed above to show that the mass continuity 
equation is satisfied if the density, ρ, is a constant. 
 
(b)  Verify that Faraday’s equation is satisfied if the electric field is E = –Eo ẑ   where Eo 
is a constant and ẑ  is the unit vector perpendicular to the x-y plane. 
 
(c)  Use the resistive MHD Ohm’s Law above to determine Bx(y) in terms of the 
electrical resistivity, ηe, the magnetic permeability, µ0, and the constants, k and Eo.  
“Explicitly” means you should solve and integrate the different equation that comes from 
Ohm's Law.  (Hint:  You will need to use the Dawson Integral Function.) 
 
(d)  Plot the solution for Bx with Bx normalized to B0 and y normalized to l.  B0 and l are 
constants defined by 
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B0 !!=!!
E0µ0l0
!e

 ,   and    l0 !!=!!
2!e

kµ0
 . 

 
What is the physical significance of B0 and l0? 
 
(e)  Use the momentum equation to determine the gas pressure p(x, y).  What happens to 
the gas pressure as x or y tends to infinity? 
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Reconnection — problems (D.W. Longcope)

2. Two-dimensional current-free magnetic fields can be conveniently represented using complex
functions. For example, the field from a pair of parallel wires, located at x = ±a and each
carrying current I0, satisfies the complex equation

By + iBx =
µ0I0/2π

x+ iy − a
+

µ0I0/2π

x+ iy + a
= F̂0(x+ iy) . (1)

This is a complex function of the complex variable w = x+ iy. The magnetic field it describes
is current-free (∇×B = 0) where ever the function is analytic in w. From eq. (1) we see that
this is everywhere except at its two simple poles, w = a and w = −a, which are the wires.

(a) Compute the total amount of magnetic flux (per length in the third direction) passing
though a surface stretching along the x axis from the null point at the origin to the
edge of a wire; take the radius r ≪ a. We’ll call this “private flux” since it separately
encircles one wire, while the rest of the flux, “shared flux”, encircles them both.

(b) With a current sheet (or tangential discontinuity like that in fig. 4.6 of Vol. I) of length
2L at the erstwhile null point, the magnetic field is given by the function

By + iBx =
aµ0I0/π√
a2 − L2

√

(x+ iy)2 − L2

[(x+ iy)2 − a2]
. (2)

This function is non-analytic (and thus has current) at two simple poles, w = ±a (the
wires) and a branch cut running along −L < x < L; this magnetic discontinuity (tan-
gential discontinuity) is the current sheet. Show that the magnetic field along the x axis
is horizontal within the current sheet and vertical everywhere else. Expand about one
of the branch points, w = +L, to determine which sense the field has on each side of the
current sheet.

(c) Assume L ≪ a to simplify the field at and around the current sheet. Find the peak
magnetic field at the edge of the current sheet. Use this value to show that the field
along the y axis agrees with (5.21) of Vol. I provided |y| ≪ a. (Please note that there
may be a small error when comparing to fig. 5.4.)

(d) Use the approximate version from above to compute the total current, Ics, carried by
the current sheet. Is the sense of current the same or opposite to the wires? Show that
your result agrees with the net current inferred from the large-distance limit of eq. (2).

(e) Write down a definite integral representing the “private flux” now encircling one wire.
Rather than performing this integral we can find an approximate expression by replacing
the current sheet with a wire at the origin carrying the same current as the sheet.
Compute the flux encircling either of the original wires explicitly in terms of Ics. Show
that result differs from that of part (a) by a term ∆ψ(Ics) ∼ Ics ln(Ics).

(f) Using the approximation of ψ(Ics) above compute the electrodynamic work (per length
in the third direction), dW = −Icsdψ, required to raise the current from zero to its final
value. Express the result purely in terms of Ics, ultimately scaling as I2

cs ln(Ics).
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(g) Begin with a potential field (Ics = 0) between wires with current I0 separated by 2a0.
Assume that a small change to the separation results in a current sheet described by eq.
(2) without changing the private flux. (Assume also that I0 is held fixed throughout this
move). Which direction are the wires moved? Compute the mechanical work done on
the wires in changing their separation. Compare this to the electrodynamic work from
part (f).

3. Consider a simplified version of the current sheet created between parallel wires in the previous
problem, or in fig 4.6 of Vol. I. The sheet has width 2L and a very small thickness 2δ > 0
in place of a genuine discontinuity. The field within this sheet can be written using a flux
function, B = ∇A× ẑ where

A(x, y) = − µ0Icsy
2

2πδL2

√

L2 − x2 , |x| ≤ L , |y| ≤ δ . (3)

(a) Show that the field strength on each side of the sheet (except very near the tips, |x| ≃ L)
has the Green-Syrovatskii form

|B| ∼ Bpk

√

1 − x2/L2 , (4)

and that the current density within is ∼ |B|/δ. Show also that the net current carried
by the sheet is Ics.

(b) Using the approximations from above find the Lorentz force density within the sheet.
Are the forces directed toward increasing or decreasing the current density? Would flow
generated by this force increase or decrease the magnetic energy?

(c) Define the Lunquist number (see eq. [5.16] of Vol. I) of the current sheet, Lu = µ0LvA,pk/ηe,
where vA,pk is the Alfvén speed using Bpk. Show that Lu is proportional to Ics with a
constant of proportionality having nothing to do with the current sheet or magnetic
field. What current (in Amps) produces Lu = 1 in the Earth’s magnetosphere? in the
solar coronal? (You may use the typical values from table 5.1 of Vol. 1).

(d) Assume a resistivity which is ηe within a central portion of the sheet |y| < δ, |x| < ∆ ≤ L
and vanishes elsewhere. Compute the electric field at the center of the current sheet.
Use this electric field to compute the rate of electrodynamic work (per length) done on
the current sheet, IcsEz. Compare this with the total Ohmic dissipation equal to the
integral of ηe|J|2. Compare the two for (i) Sweet-Parker reconnection ∆ = L and (ii)
Petschek reconnection ∆ ≪ L. How do you account for any significant discrepancy?

(e) Assume the electric field is uniform and matches the value found above for the center
of the sheet. Use this to compute the net Poynting flux into the resistive region. Take
the limits ∆ ≪ L and then ∆ → L. How does this compare to the Ohmically dissipated
power? the rate of electrodynamic work?
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