Problem Set SOLUTIONS: Heliophysics Textbook II: Chapter 8

Martin Lee Solutions (2010)

In many of the problems encountered in the heliospheric transport of energetic
particles, particles are scattered effectively in pitch-angle during timescales of
interest. The scattering is due to the irregular electromagnetic fluctuations in the
plasma that have a secular effect on the particle velocity. Under these circumstances
the particle distribution functions can be assumed to be nearly isotropic, and the
appropriate transport equation is the energetic particle transport equation first
derived by Parker (Planet. Space Sci., 13,9, 1965). Applications of this transport
equation have had a huge impact on this area of research from the solar modulation
of galactic cosmic rays, to the transport of solar energetic particles and the
mechanism of diffusive shock acceleration. It is therefore essential for a student of
energetic particle transport to gain familiarity with the equation, the physics behind
it, and illustrative applications of the equation to many of the important energetic
particle populations in the heliosphere. The problems that follow are rather diverse
and only ordered by their difficulty with the easiest problems presented first.

1. Particle Conservation

Consider the Parker transport equation

7 o

I Vv kv Lliv
(V4 V) Vf =V K Vf - (V V)p&p

with no source of particles on the right hand side, where the drift velocity

Show explicitly that the total number of particles in phase-space is conserved as
longas f(Ix =) and f(p —>) vanish. It is helpful to write the equation in

conservation (continuity) form.
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1. (Solution)

Since V- V,, =0, rewrite the equation as

I (v low.? v v
Y [(V+V,)f]-(v-V)f 3)(v V)pﬁp V-K- Vf =0

Combine terms 3 and 4 to yield

I v B B P
—+V [(V+V,)f] pmp[?)(v V)p f] V-K- Vf =0

Integrate the equation by operating with f d*xd*p = f d’x4np*dp, noting that

N = [ d’xd’f .

&N, [amp?dp [ &*xV-[(V+V,)f -K- Vf]- fd3xf4np2dpii[1(v- V)p3f] =0
ot P piopl3

Note that the integrals only involve either f (|x| —>00) or f ( p— 00), which vanish.
This implies that dN/dt =0, and that N is constant.
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2. Interplanetary Propagation of Solar Energetic Particles (SEPs)

High-energy particles are accelerated close to the Sun in association with flares and
coronal mass ejections (CMEs). They occur either as discrete impulsive events or
gradual events. The former events are thought to be accelerated as a byproduct of
magnetic reconnection at the flare site, while the latter events are thought to be
accelerated at the shocks driven by fast CMEs near the Sun. In both cases these
particles propagate into interplanetary space after their release at the Sun. The
particles that arrive first at an observing spacecraft propagate nearly scatter-free
through the ambient electromagnetic fields. However, those that arrive later have
been scattered by electromagnetic fluctuations, have nearly isotropic velocity
distributions, and may be described very approximately by the Parker transport
equation.

The simplest possible model neglects particle drift, advection with the solar wind
and adiabatic deceleration in the diverging wind. If N particles of a specific
momentum magnitude p, are released impulsively at the Sun with spherical

symmetry, they then satisfy
of N

~ =K(p,)V?
p (p,) f+4m02

O(p = p,)O(r)o(1)

where we have assumed that the diffusion tensor is isotropic and homogeneous.
Find f(r,t,p,). For an observer at heliocentric radius r, at what time is the

maximum particle intensity observed?
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2. (Solution)

Take the Fourier transform of f(x,y,z,t)

—iaf = -K(k2 +k2 +k2) f + N(4mp2)~'8(p - p,)

= J =iN(4m2) " 8(p - p o +iK(k2 +K; +£2)]

N - iN(4mp2 )~ 8(p - py)
ik-r d —iwt 0
[ doe ©+iK(k2 +k2 +k2)

" 2m)*

Performing the ¢ -integration by closing the contour in the lower-half plane for
t >0, we obtain

f= ke™ " (=2mi)iN(4mp3) ™ 8(p - pye

(2)

1

= Gy g 20 PO ke o

where the last pair of brackets are the same as the first but with y or z replacing x.

Completing the square in the exponent of the k_ -integration yields

1 N TREIE) Oul i AV I ON 1/2 _z2(4Kr)™!
= o
/ ’ (p- p)(Kt) ‘ (Kt) ‘ (Kt)

27) 4p?
N 1 2, -1
— (S _ - -r(4Kt)
a2 Y8 P G

r2

(6K)

Maximum intensity = i =0=1t=
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3. The Solar Modulation of Galactic Cosmic Rays

Consider a simple model for the solar modulation of galactic cosmic rays, which
nevertheless includes many of the important features of the process. Take the
stationary spherically-symmetric Parker transport equation for constant solar wind
speed Vand K, =Vr/2 (independent of energy)

1 12
s o?( 2Kri)___" ¥,
or  rior

-——|r
2 or) 3r p&p

where drift transport is neglected. Find f(r <r,,p) subject to the boundary
condition f(r,,p) = p,6(p - p,). The solution represents the modulation of a
monoenergetic population of galactic cosmic rays. A more general energy spectrum
of cosmic rays in interstellar space may be obtained by convolution. Hint: a more
convenient choice of independent variables is x =1In(r/r,) and y =1In(p/p,).

Describe the essential features of the solution. Find p,,, the momentum at which f
has its maximum value, as a function of r.
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3. (Solution)
1d(1 .0 2 4
L 1o(1) 2,0
or ror\2 or 3" dp
1 2
ri——ri(ri)—ri——lni=0
or 2 odr\ or or 3" dp
I°f 4
—]:+—i=0
ox° 3dy

Fourier transform in y

f= C(a))exp[:(4ia)/3)1/2x]
Require convergence as x —- (keep the sign which converges)

f= %fidwe" "“’}’C(w)eXp[i(‘“(U/3)1/2x]

Since f(x =0,y) =6(y) = C(w) =1. There is a branch pointat w =0,

Since f(y >0) =0 (particles only lose energy), we choose the integration path to
pass below w =0 and the branch cut along the positive imaginary axis.

For y >0, we complete the contour with an infinite semi-circle in the lower half-
plane. We obtain

f(y>0)=0

Fory <0 we evaluate the integral along a contour descending down the left side of
the branch cut and ascending up the right side.

On the left side w = 56_,»3”/2’ dw = d&e‘3"”/2

On the right side o = & 2 o = a’Ee"”/2

P i fjd&e_m/z . iystexp{i[4 exp(in/Z)EeXp(—i3ﬂ/2)/ 3]%)6}
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1

+$ f om de 2y - iygiexp{i[é‘ exp(i/2)Eexp(i/2)/ 3] Ax}

With @ = &' = +fie" = exp[i(9/2 + ”/4)]

Thus the real part is convergent with the (+) sign forx <0
[ = & . )2 . 12
f=o-), dse {exp[zx(4§/3) | - exp|-ix(42/3) ]}

_ _%fowdgeyésin[x(4§/3)l/z]

- % J7 agexp(-ylg)sinf}x{(4/3) ] =% S 2ndnexp(yinbin[n(4/3) ]

- % I _O:o ndnexp(-|yn?) sin[n|x|(4/ 3)1/2]

V3 g

gl I |f dnexp( |y|7])COS[7’I|x|2( ) 1/2]

- ;/;aﬁ f dnexp( |y|77 )CXP[17I|X|2( ) 1/2]
- j;aﬁf anexp{n-ily”'G) " Flesel (3] ]
ﬁ J - yln?
rrh |eXp[ x(3ly])” ]Ld?,;L
e
J— 31w 2l
Wexp[ 4 (3p]) ]( 3y |)
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ap p dy|
R e v
TR N
3_k
2 3|y|
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4. A Simple Model for the Production and Evolution of Interstellar Pickup lons
in the Solar Wind.

Interstellar gas enters the heliosphere under the influence of solar gravity, radiation
pressure, and ionization losses. The resulting neutral atom density is n(r,0) , where
ris heliocentric radial distance and 6 is the angle of the heliocentric position vector
relative to the bulk inflow velocity of the atoms. We may assume that the ionization
rate per atom is f,(r,/r)’. When an atom is ionized it has a speed approximately
equal to the solar wind speed Vin the frame of the solar wind. We assume that these
ions are immediately picked up by the solar wind via gyration and pitch-angle
scattering to form an isotropic shell of speed Vin the solar wind frame.

(a) Assuming that the pitch-angle scattering rate is so large that the spatial
diffusion tensor is negligible, write down the Parker equation for the
evolution of the pickup ion omnidirectional distribution function f(r,0,v)
with an appropriate source term. We assume that the configuration is
stationary and that the solar wind has constant speed and spherical
symmetry.

(b) Solve the Parker equation for f(r,0,v).

(c) Approximate f(r,0,v) forlarger.

(d) Draw a schematic plot of f(r,0,v) versus v.
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4. (Solution)

i g _l . 1_ NE 5(" V)
(a) c7t+VVf 3V VV&v_ﬁo(r) n(r,0) ———

When integrated over d°v, the RHS gives the rate of pickup ion generation by
ionization:

on

bi _ T2
g‘ﬂo(r) n(r,@)

Under the specified assumptions

¥ 2 201
oot

(b)  Solution by characteristic curves:

P df

_g-l ’ 0
S AL

o(v — V)

The family of characteristic curves is given by:

£= 3dv %=C
r 2 v

(information travels along these curves)

f= constant along a characteristic curve for v< Vand forv > V:

forv>1: f=0 since particles lose energy by adiabatic cooling
forv<1: =0, constant along each characteristic curve

a  3r ( ) S(v-V)

“ __Z° ,0

v 2v & 0= s 47V’

where r=Cy 7
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7_31 ﬁ %) O =V)
v ﬁor ey 0= e 47V
Integrating acrossv="V
VA v g ]
J’(V+€)—f(V—€)=——/30r0 C n(CvV )4W3
= f(o =SB Y ev
4nv?
Thus
3/3’0r0V/2 2oy
f(ry <V)— P ﬂ(i’vsz 36)4HV3

Forv<<V, n(rv Py -3/2 @) is exponentially small due to ionization.

() For large r and v ~ V, n approaches the interstellar number density so that
flry<V)yocr! y,

(d) A schematic plot of f{v) versus v should be drawn.
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5. Diffusive Acceleration at a Planar Stationary Shock

Consider particle acceleration and transport at a planar stationary shock at x = 0, for
which the Parker transport equation in the shock frame is

A A P AR A

ox ox\ dx) 3dx " dp (1)
The upstream fluid flow is V,(x <0) =V, >0 and the downstream fluid flow is
V.(x>0) =V, >0, where both V, and V, are constants. The diffusion coefficients
are K(x <0) =K, and K(x >0) =K,, where K, and K, are functions only of p. The
boundary conditions are that f(x — ) is finite and f(x —-%) = f.(p), where
f.(p) represents the ambient population of energetic particles. The objective of this
problem is to calculate f(x,p).

(a) Solve equation (1) separately upstream (x < 0) and downstream (x > 0) of the
shock. Each solution should involve two undetermined functions of p.

(b) Impose the boundary conditions at x —-o and x — .

(c) Impose the condition f(x = —¢) = f(x =¢) at the shock as & —0. Why is this
condition appropriate?

(d) The final undetermined function of p is determined by integrating equation
(1) from x =-¢ to x =¢ and allowing ¢ to approach zero. This “jump
condition” yields a first-order differential equation for the remaining
unknown function. What is the physical meaning of this jump condition?
Solve the differential equation to determine the function.

(e) Write out f(x <0,p)and f(x >0,p) explicitly.

(f) Evaluate f(x,p) for the specific case f.(p)= f,6(p - p,).
(g) In this case write the power-law index in terms of the shock compression
ratio p,/p, =V, /V, =X ,where p is the fluid mass density.
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5. (Solution)

(a) For x <Oand x >0

2
v g
ox

0

A trial solution is f o« exp(ax) = aV, -Ka’=0=a =0or a =V, /K.

x<0:f=A(p)exp(V,x/K,)+ B(p)
x>0z f =C(p)exp(V,x/K,) + D(p)

(b) x—=-x:f=f(p)=B(p) =r(p)

x —oo: ffinite = C(p) =0

(c)  f(x,p) must be continuous at the shock. A discontinuity would imply an
infinite flux for a diffusive process, which in turn would smooth the
discontinuity and lead to continuity.

f(x=-¢)=f(x=¢)= A(p)+ f,(p) = D(p) wheree— 0.

(d)  Note that V, df /dx is finite near x = 0; integration of this term vanishes as
¢ —0. Integrating the equation yields:

L/ L v lpL(x-0) -
—K§x(x—£)+K(9x(x— £) 3[Vx(s) V( e)]pap(x 0) =0

This condition represents the continuity of the differential flux of particles at
the shock including both diffusive and convective parts.

Since df /dx =0 for x> 0, we obtain

V. 1 dD
Ku(—")A -5z Ve =V)p—=0
K, 3 ap

1 oD
=<V, -Vop—+V.(D-f) =0
3 op

oD 3V, D 3V, f(p)
= — 4 — =
o V,-Vop V.-V, p

3V,
V.=V,

Let

=p

The integrating factor is exp(p f dpp") =p*f
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d
d—(pﬁD) =pp’ ~'f.(p)
p

p’D =B dp'(p)’ ' £.(p)+ D,

Since the particles accelerated must depend on the magnitude of f.(p), and as
p —0 there can be no accelerated particles, D, =0 (also D, =0 would resultin a
divergence as p —0)

(e)

(0

(g

= D(p)=Bf

P@(P'

B
—) J.(p)
P

x<0: f =[D(p) - £.p) |exp(V,x/K,) + £.(p)

x>0:f=D(p)

f(p) = fo6(p - py)
= D(p<p,) =0

B
D(p > p,) = ﬁﬁ(&)
p\p

0

po M 3 3 X
u_‘/d l_ﬁ 1_i X-1
v, X
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6. A Simple Example of a Shock Modified by Energetic Particle Pressure.

Consider a fluid with mass density p, velocity V, and negligible pressure. It
transports nonrelativistic energetic particles, which are coupled to it by a constant
diffusion coefficient K. The relevant equations are the hydrodynamic equations for

the fluid and the Parker equation for the energetic particles (ignoring the magnetic
field):

Ip

—+V-(pV) =0, 1
o TV eY) (1)
p% +p(V- V)V =-VP, (2)
o 2y 1 9

—+V-Vf-KV°f -—V- Vyv— =0, 3
A S =3V Ve (3)

where P is the energetic particle pressure (P = (4Jr/3)fdvmv 4f)

(a) Take the pressure moment of equation (3) to derive an equation for
P(x,t). You should get a factor 5/3; set y=5/3.

(b) Now consider a stationary planar system with variations in the x-
direction only. Rewrite equations (1) and (2), and the equation for JdP/dt
derived in (a) specifically for this system.

(c) Find three integrals of the system and identify them as mass flux,
momentum flux and energy flux conservation. Identifying the integral
associated with the P equation is somewhat tricky. Rewrite the factor

PdV /dx appearing in one term as d/dx(PV) —VdP/dx. Then in the terms
involving the derivative dP/dx use the simplified version of equation (2)
to replace dP/dx by the term in equation (2) involving V and dV/dx. The
resulting equation may be integrated easily.

(d) Determine the three constants by setting V =V >0, p=p,and P =0 as

X —> -0,

(e) Derive the following equation for V(x) alone by eliminating P in the

energy flux integral:

2K dV -1
= v v -Ty,
y+1 dx y+1
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(f) Solve this equation for V(x) and interpret the constant of integration.
Derive expressions for p(x) and P(x). Plot all three functions schematically.
Think about the derived structure. What does the solution represent?

Page | 16 of 26



Problem Set SOLUTIONS: Heliophysics Textbook II: Chapter 8

6. (Solution)

(a) Pressure moment of equation (3)

oP 1 1

—+VVP-KV’P-—V-V-4nx fdvmvS—(?f =0

ot 3 3 av
[

—Sfdv mv>f

P 5
= —+V'VP —KV2P+§(V- V)P =0

Set )/55/3

(b) For a stationary planar system

() pV = A, mass flux
pV?+ P = B, momentum flux

For the last equation write

dP d’P  d dP
V—-K—+y—(PV)-yV—=0
dx dx dx dx

dpP d’P d
= _(y_l)VE_KW-F}’E(PV) =0

av. d’P d
~1)pV’—-K —(PV)=0
=(y-1)p 0 dx2+ydx( )

> K dP
:pVV—— d—+ ’_py = C, energy flux
2 y-ldx y-1

(note that P/(y -1) = ¢, energy density of energetic particles)
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(@  A=py

0

B=p\V;

0

C==pV;

0

> K av
&) pV—+—pvi Tt y(B_pv?)=cC
2 y-1 dx y-1

2K dV -1
- ——(v-vo)(v—”—v)

y+1dx

_(y+Dx
(0 Let z = Yy

dv

(v —vo)(v -HVO)

y+1

dz =

_y+l| dv av

TV, |V -y, _V_V—lvo
y+1

y+1
7=1"

0

+C'

y -1
ln(VO - V) —ln(V —mvo)

note V <V, and d—v<0
X

C’ describes the position of the structure in x; we take ' = 0
V-V
-1
K V _ y 0
y+1

Solve for V(x)

-1
1+ LHGXP(VOX/K)

_ Y
v=v 1+exp(V0x/K)
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1+exp(V,x/K)

P =P, -1
1+ );Hexp(Vox/K)
P=pV:-pVi=pV,V,-V)
2 exp(VOx/K)
y+1 [1 +exp(V0 x/K)]

2

Approximate sketches of V,pand P should all be drawn.

The structure represents a strong shock modified by the energetic particles. Since

P(x ——-o0) =0, the shock has infinite Mach number and a compression ratio of 4.
The energetic particle acceleration provides all the shock dissipation. There is no
fluid subshock.
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7. Stochastic Acceleration of Particles in a Homogeneous Plasma.

Stochastic acceleration of particles is a classical acceleration mechanism. The
original version of the mechanism, second-order Fermi acceleration, was developed
by Fermi to account for the acceleration of galactic cosmic rays by “collisions” with
interstellar “clouds.” Although the original application of the mechanism is no longer
viable, subsequent versions describe the acceleration of particles by a spectrum of
Alfvén waves, by a spectrum of magnetosonic waves, by stochastic compressions
and expansions in a plasma, and by multiple shock waves. The basic mechanism
may be understood by considering the elastic scattering of particles off a
homogeneous isotropic ensemble of massive spheres with random velocities V,
radius R, and density N. The appropriate transport equation is

where fis the omnidirectional distribution function, p is momentum magnitude,
D(p) =(1/3)(VHA~'p?/v,vis particle speed, and A[=(7R’N)™'] is the scattering
mean free path. Calculate f(#,p) if f(0,p)=n,(4mp2)" 8(p - p,) and the particles
are nonrelativistic. It is helpful to choose variables P = p/ p, and 7, an appropriate
dimensionless time. Find limiting forms for f(P,t) for (a) 7 <<1 and P arbitrary
and (b) 7 >>1 and P finite.
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7. (Solution)

Since p xv, D « p,we have in dimensionless variables 7 and P

o _Li[Psi]
- 2
ot P oP JP

where D =Pp; D and 7=D,t.Laplace transforming in 7 yields

dzf of ~ n
P—=+43—-sf =——25(P -1
PSRk e Ul
the solution of the homogeneous equation is
7(P)= P Z(25"PY)

where Z(z)is the modified Bessel function 1,(z) or K,(z). j‘(P) must be

continuous at P =1 and satisfy

To satisfy boundary conditions as P —0, « we choose
F(P>1)=aP K (257 P1)
f(P<1)=BP" 12(2s‘/2P1/2)
The jump conditions yield
AK (257) - BL(25") =0

AK'Z(ZSI/Z)S1/2 _ BI'Z(ZSI/Z)S1/2 _ _Z_J(_)[

where I, is the derivative of I, with respect to the argument. The determinant of

the coefficients is

Det =W|[1,,K,] = —s2/2, where W is the Wronskian.

= A= n0(2ﬂ:)_1 12(2s1/2)

B = nO(Zn) - K2(2s1/2)
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= F(P>1) = n,27P) " 1(25")K (25" PP)
F(p<1)=n,27P)" K (25") 1,(25" P1?)
To perform the inverse transform we must calculate
1= [ dse" (s )K (Bs"”)
There is a branch point at s =0. Let the branch cut be the negative real axis of s.
I=-[ dg ‘5’12(ia§1/2)1<2(i/3§‘/2)
+f " dge L (-iag )k (~ipE"?)
Now (&) = -7 (&)
K, (BE") ~ K, (~ipE"?) = ~in (ifE"?)
= 1=in [ dge *J,(ag"),(pE")

Using integral tables
2 2
I= im"llz(a—ﬁ)exp _—(a +ﬁ)
2t 4t

L 11(213'/2) (P+1)
= - eXpl-——
2aP2t A\ T P

For small 7 and finite P
fort 2 exp[—(Pl/2 - 1)2/17]
For large t and finite P

far
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8. Particle Scattering by a Magnetic Irregularity.

Consider the motion of a proton in a magnetic field given by

B= Bo(d—Fi+ Ej+ k)
dz dz

where F = F(z) and G = G(2).

(a) Give the equations for x(z) and y(z) describing the magnetic field lines.

(b)  Write down the three components of the equation of motion,

md’r /dt* = (e/c)(dr/dt) x B, involving d*x/dt?, d*y/dt* and d’z/dt’.

() Show explicitly that the proton speed v is a constant.

(d) Integrate and manipulate the equations for d°x/dt* and d’y/dt’ to show that
if F(z —=>=%»)=F, and G(z =>+%)=G,, where F, and G, are all constants, a
proton that traverses the configuration from z =-o to z =+% encircles the
same field lineat Z=+% asitencircled at Z=-%,

This means that in this configuration the particle precisely follows the field line.

(e) Now take

F(z) = esinQQmz/L)exp(-z°/1%)
G(z) = ecos(Qmz/Lyexp(-z> /%)

where € <<1, Sketch a field line as carefully as you can.
() To zeroth order in &, the proton trajectory satisfies Z =V and
V =V, 8in(Q7 + @i +v,,cos(Qr + P)j+v K, where 2 =e¢,B,/(m,c), Integrate
the equation for d°z/dt’ to calculate to order € the change in v, Av,, as the
proton moves from Z —>-% to Z —>+%_ You may wish to integrate by parts.
(g) Interpret your answer. Do you see evidence for the cyclotron resonance
condition? What determines the sign of Av.?
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(Solution)
B-= Bo(d—Fi+ Ej+ k)
dz dz

dx«  dy dz
dF/dz  dGldz 1

dx dF

& @ O
dy dG

—_— = =G

- Y (2) +y,

i j k
md’r/dt* = (dv/dt) x B = B |dxjdt dyjdt defdt
C C
dF/dz dGldz 1
F F
EBO[.(dy dz dG)_.(dx dz d )+k(dx dG dyd )}

dr dr dz

] dt dr dz

dt dz dr dz

o _gfdrdo i)
dt dz dt dz

—+—— =
di* dr  dt* dt di* dr

d>xdx d»dy d%dz (dx)2 (dy)Z (dz
— —+——=0=|—| +|—| +|—
dt dt dt

2
) = v? = const

dx
Z_a(y-G-c
it )
d

& _Qux-F-C)
dt

When G and F are constant (as for z — o)
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d’x dy

—— == =-Qx-F-C
dr? dt (x )
d?y dx
. 0= - @(y-G-C
dr® dt (v ”>

This is a simple harmonic oscillator centered on the field lineat x = F +C,
and y=G+C,.

Thus the particle encircles the same field line wherever the field line is
straight, in particular as z —=-o and z —+o.

(e) Draw a sketch of the field line determined by F(z) and G(z).

(H)

&z _dv, _Q(ﬂﬁ M)
dt> dr \dt dz dt dz

Since F,G ~ ¢, the zeroth order orbit of the proton may be substituted on
the right hand side

v, (dx/dt 4G dy/dt dF

dt ~ \dz/dt dt ~ dz/dt dt

—Qlo [sin(Qt + ¢)Cil_(t; —cos(Q1 + ¢)CZ—I;}

z0

Vi [ dG dF
Av,=Q-2 | dt|sin(Qt + p) — —cos(Qt + ¢) —
v, . f B [sm( + Q) 5 cos(Q1 + ¢) 0 }

z0

Integrate by parts noting that G,F vanishas ¢ — *o.

Av, = Q2 [ di{-Qcos(Q1 + )G - Qsin(Qt + ) F ]
VZO -

Av, = Woghap f _Z dt[cos(Qt + gl))cos(Zm/Zot/ L) +sin(Qt + ¢)sin(2mzzot/ L)]exp(—vgo 1’ 12)

vzo

oo 2
= —Qzﬁgf_mdtcos[(g - sz,o)t +¢ exp(—vz?a t2/12)

VzO

Av, = —szsRef: dtexp{i[(Q - 2m/20/L)t + qb]}exp(—vfo tz/l2)

sz
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v oo V2 i 2av,\ I | ? 2.\
= —Q*>~L0Reexpi diexpl ——% |1 - —|Q - =22 | — - Q- ==
v € eexp(lgl))f_w CXP{ 12 |: 2 ( L ) V2 ] %Xp[ 4‘}120 ( L ) l

z0 z0

% [ o iv 2av_\ 1 |? 1292( 27v_,\?
= oY cReexp(ip)— [ drexpl-|v-+22{q - ) L }e i 1-—”)
% ¢ eexp(quvof_w tex% [T 21 ( L )vﬁo} Xp[ 4v3 QL

z0 Z Z

v r* (. 2mv,\
= —-Q>—2% glcosp/ wexp| - E—
2 o0 We"pl v} ( oL ) l

The cyclotron resonance factor appears in parentheses: Unless kv  -Q=0,

the exponential factor makes Av, small. The “sharpness” of the resonance condition
is dictated by 1°.

Clearly Av, is « ¢ and o« .

The sign of Av, is determined by ¢, the phase of the proton gyration relative to the
phase of the magnetic field rotation.
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