Problem Set SOLUTIONS: Heliophysics Textbook I: Chapter 5

Solution to Problem 1
(a) Since p is constant and uniform, the continuity equation reduces to

d du,
Veu = 2 T L g,
0x ay

which is satisfied when the expression for u, and u, are substituted into the equation.
(b) Since B does not vary in time, Faraday's equation reduces to

VxE = 0.
Thus,

These conditions are both satisfied if £, = constant = —E,,.
(c) From Ampere's Law, the current density is

. 1 an n
J = z,
U, ay

Substitution into Ohm's Law along with the expressions for u and B, yields

yB. = E,u,

X

dy n, n,

X

oB k
9B, ki

which is a first-order, linear , ordinary differential equation (ODE) with the solution

E [ 2> Yy 2 E u.l
B = ooty o 07lo) dt = oMolo daw(y/1,)
n. 0 n.
where [, = 2n, / ku, and daw(y/l,) is the Dawson Integral function. Other notations
used for this function are

daw(x) = D.(x) = e erfi(x) = ——iNme™ erf(ix) ,
2 2
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(d)

The constant [, is the diffusive scale length, that is, the location where the outward
diffusion of the magnetic field roughly equals the inward motion of the plasma. The
constant B, is approximately 1.85 times the maximum value of B,. This maximum value
occurs at y/l, = 0.924 which is of order unity. Thus B, is about twice the maximum value
of the magnetic field, and this maximum occurs close to the location where the outward
diffusion of the field is balanced by the compression of the field due to the plasma
inflow.

(e) The two components of the momentum equation are

Ju ou 0 B. 0B
o — o+ u,— = _ 5 B
ox dy ay W, 9y
and
d d
ox ) 0x
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where B, is given by the solution to part (c). At large distance p tends to minus infinity
primarily because the kinetic energy increases as distance squared. Thus, the solution is
only valid for finite distances from the stagnation point at x =0,y = 0.
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Reconnection — solutions

4.

(a)

We find the field along the z axis by substituting w = z into eq. (1). The result is purely
real so B, = 0 — the field is purely vertical. The vertical component is

polo/2m n polo/2m
Tr—a r+a

By(x,0) = , (5)
which vanishes when 2 = 0. The field is oriented downward (B, < 0) through the surface
from © = 0 to x = a — r (the inside of the right wire), so the net flux is given by the

integral
a—r

Yo = — / By(x,0)dz — “20—7*:0 n(a/2r) . (6)
0

We evaluate the field on the z-axis by substituting w = z into eq. (2)

apoply/m Va2 — L?

By +iB, =

(7)

Outside the current sheet 22 > L? the radical in the numerator is purely real and the
field is therefore perfectly vertical: B, = 0. On the other hand, within the current
sheet 22 < L? the radical in the numerator is purely imaginary and the field is therefore
perfectly horizontal (B, = 0).

To expand the /- about the branch point write w = L + € €’®, where ¢ < L and ¢ is the
polar angle. Expansion of (2) yields

By +iB, ~ — %@ezm ' ®)
This shows that to the right of the current sheet (¢ = 0) the field is directed downward
— consistent with its sense just to the left of the right wire. Noting that e="/2 = 44,
we see that B, < 0 above the sheet (¢ = +x) and B, > 0 below the sheet (¢ = —)
— consistent with the counter-clockwise sense the field has at great distances. The
tangential component, B,, is discontinuous across the sheet and there is no normal
component there, B, = 0; this is a tangential discontinuity.

Using |z| < L < a in eq. (7), and the signs determined above, gives

I
By(x,40) = FE0 1247 (9)
Ta

adjacent to the sheet. The peak field strength occurs at x = 0 where

1oL
By = max|By(x,0)] = £ (10)

Ta?

Evaluating eq. (2) along the y axis (w = iy) gives

q”.&ltofo/7T VyR+ L2 :Fz.uofo
Va2 — L% (y* +a*) Ta?

By, +iB, = y?+L? (11)
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where the final expression uses y, L < a. The field is purely horizontal (B, = 0) and

has the magnitude
9\ 1/2
B.| ~ By <1+ L2> , (12)

after using expression (10). This agrees with eq. (5.21) of Vol. I, after making the
substitutions Bpx — B;. Since the variable L matches in both expressions the full width
of the sheet is 2L, per our definition, rather than what is indicated on on figure 5.4.

The total current is found by integrating expression (9) in a right-handed loop around
the current sheet — under the sheet (y = 0—) from z = —L to +L, then over the sheet
(y =+0) from x = +L to —L
1 2 f L?
Is = —¢B-dl = — [ By(z,-0)dr ~ Ip— . (13)
Ho Ho 7 a

This current has the same sense at Iy. For very large complex coordinates, |w| > a, the
complex field is

-1/2 2
. auofo/ﬂ' 1 /,L()IO 1 L2 ,LLOIO L 1
B By ~ — = —(1-— ~ — (24— — . 14
y 1 VaZ = 2w T W 2 +a2 w (14)

Comparing to a single current, By + iB, = puol/2m we see an additional contribution
Io(L?/a?) from the current sheet.

For positions outside the current sheet, z > L, expression (7) is purely real, so the field
is purely vertical. The private flux is the integral of this field

a—r7T I L2
b o= — / By(z,0)dz = 20 o/7 [y (15)
/ /a2 ) / $2 _ a2
The addition of a line current I to eq. (1) gives
Iy/2 Iy/2 Lo Iy (24 L?/a®)w?® — L?
By+in:Moo/7T+Moo/7T+Mo ~polo 2+ L7 /a*)w (16)

w—a w+a 2rw 27 w(w? — a?)

The second expression shows that field crosses the x axis downward within L/v/2 < x <
a. This is the private flux encircling the right wire, and it amounts to

v = - [ Be0d = Bl - B /1)
L/V?2

_ MZ()IO ( /2) Noics (210/Ics) — ¢(Ics) . (17)

where the final expression uses eq. (13) to replace a/L = \/Iy/Is.
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(f) Performing the energy integral

(Ies) Ies
AW = — / —[CSd/l/} = - csw(Ics) + /w([cs)dlcs
o 0
Ics
= Laldle) — o] — B [ Iein@lo/ ) dl (18)
0
2 2
_ Mg—icsln(ﬂo/fcs) - ‘;%; . (19)

Expression (18) follows from using (17), and the final expression from performing the
definite integral.

(g) The constraint of conserved private flux is

_ polo ol B
T;Z)(Ics) T;DO - o n(a/GO) A ln(2IO/ICS) =0 . (20)
This places a relation between the wire location and the sheet’s current
'[CS
— In(20y/1s) = In(a/ag) . (21)
21

The left hand side is positive since I.s/Ip > 0, thus we see than the wires must be
separated (a > ag) to produce a horizontal current sheet.

Both the left wire and the current sheet exert a force on the right wire by their vertical
field contributions. We sum these contributions of eq. (16) at x = a to produce the
“external” field,

polo + poles
dma 2ma
which is upward (B, > 0). The two currents thus exert a leftward force (per length)

Bl = : (22)

ol pololes
- - 23
4dma ora (23)

F, = — B =

(attraction to the other parallel currents). Integrating this force over the displacement
of the wire, and doubling it to account for the left wire, gives the work

i 12 Iy [ I.d
AW = —2/Fx(a)da = Mg—ﬂoln(a/ao)—i—%/ - a
ao ao
I3 I L'f
_ Mot Moo _ Hoto
= 5 In(a/ap) + o IesIn(a/ap) o O/ln(a/ao)dfCS (24)

Ics

_ molg pol2 B @/
= S5 In(a/ag) + . In(27y/1Ics) 4710 IsIn(21y/1s)dls  (25)
polg :

/’[/OICS /’LOIC25
= —1 —=1n(2ly/1s) — —= . 2
2T n(a/ao) + 8 n(2lo/Ies) 167 (26)
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Expression (25) follows from insertig constraint (21) into eq. (24). The first term in
expression (26) is the work required to separate the wires without producing a current
sheet — it would be necessary even if the wires were in a vacuum. The remainder is
the additional work required due to the lack of reconnection to create new private flux.
It matches the electromagnetic energy in eq. (19) — the work required to change the
private flux.
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The tangential component of the field at the top and bottom of the sheet is

By(z,+6) = % = ;”;205\/1—#@2 : (27)

The normal component is

By (x,+0) = 0A _ 1 z6

_% §L2—:E2‘ SL“ (28)

It is evident that away from the tips, L — |z| > J, the field is predominantly tangential
(|Bz| > |By|) and conforms to the Green-Syrovatskii form with peak strength

/’[/OICS
L

By = (29)

achieves at the midpoint, z = 0.
The current density is

- 1, 1 %A Is 55 |Bu(x,0)]

after noting that the 0?A/0x? will be small provided L — |z| > §. The total current is
found by integrating over the sheet

L ) L
21 dx
I = dz | dy J, = == 1—22/12 = = I 1
{w/é y (o) = = {\/ 22/12 2 (31)

The Lorentz force density is

F = JxB = yJ.(z)By(x,y) — %xJ,(x)By(z,y)
fol3 a?\ y y’r
T Kl‘ﬁ) 23 e ®| (32)
The force is directed toward the origin. The largest forces are from the sides of the sheet
near the mid-point, x = 0, y = 4§ will begin to move the sides inward, making the sheet
narrower and therefore making the current density larger. Since this is a Lorentz force

it is directed so as to reduce the magnetic energy. Indeed, the minimum energy possible
(without reconnection) is for a genuine magnetic discontinuity, 6 — 0.

The Alfvén speed at the position of peak field strength is

Bpk /’LO—[CS
VA pk = = , (33)
P Viop  mLy/fiop
after using eq. (29). Using this in the Lunquist number gives
L. = IU'OUA,pkL _ Ng/2jcs _ I (34)
u = = = .
TNe 7T776\/ﬁ 7”76\/51“(;3/2
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The denominator is a current

e \/ﬁ s ln A In; 9 n;
Iy = = [ =% = 1072InA ,
P 3/2 (47 x 1077)3/2 107><109e2 T3 0" T3 (35)

Ho

after using egs. (5.12) and (5.13) from Vol. I for 7.. Using values from table 5.1 gives
very small currents.
magnetosphere corona

n; 10° 10 m™3
T, 107 106 K
InA 11 33 —

I 107° 1072 Amps

This means a magnetospheric current sheet carrying I,s = 1 Amp has L, ~ 10 — a
very large Lunquist number, meaning resistivity is a very small effect. A similar current
sheet in the corona would have only a modest Lunquestion number (L, ~ 100), but
this is an exceptionally small current for such a big place. Typical coronal currents are
> 107 Amps.

(¢) The electric field at the center is

Mes
Ez = z
0) = ns.0) = 2= (36)
The electromagnetic work is
nlZ
EZICS = 5
wLd (37)

This can be seen to match the rate at which magnetic free energy is released form the
current sheet equilibrium by time differentiating eq. (19). The power from direct Ohmic
dissipation is

A
anI?
_ 2 _ 2 _ cs 2A _ 1A3
P, = /nJ dedy = 277(54J (x)dx = 7(71‘[/2)25([/ A —3A%)
A A3 4 (A A3
- ﬁLé( 3EJ - E(Z"‘ﬁﬁ)Exmks‘ (38)

When the resistivity is uniform over the current sheet, A = L (Sweet-Parker recon-
nection) the magnetic energy released is converted mostly into heat directly by Ohmic
dissipation. When the resistivity is concentrated in a small central region, A < L, the
resistivity thermalizes only a small fraction, A/L < 1, directly. This corresponds to
Petschek reconnection whereby slow magnetosonic shocks convert the remainder of the
energy to kinetic energy and heat.

(d) The Poynting flux normal to the sides of the current sheet is

_ _ polé 2/72
Sy(x,+0) = E.By(r,+0) = 3725 1—a2/L?% . (39)
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The contribution along the “ends” at x = +A is generally smaller by ~ §/L and their
length also smaller by ~ /A, so we will neglect them. The net energy flux into the
sheet is therefore

A A

241012 d

P ~ /[sy(x,—a)—sy(x,+5)]dx = i /\/1—:52/L2fx
N -A

2
= 772:20[{35 [sin_l(A/L) + (A/L)m} (40)

In the limit L — A we recover a power matching eq. (37), showing that all the elec-
tromagnetic work done on the sheet is transmitted through the Poynting flux. The
restricted sheet limit, A < L, gives

410 I(?s A

P ~ —
"L L

(41)

matching the same limit in eq. (38). This shows that all the energy entering the inner
resistive region sheet is Ohmically dissipated.
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