2012 LWS Heliophysics Summer School Problem Set on Turbulence aatihigén the Solar Wind

1. Turbulent Heating. Matthaeus & Goldstein (JGRB7, 6011, 1982) analyzed an interval
of slow-solar-wind data taken by instruments onboard\thyager spacecraft in 1977. In
this data interval, the mean flow speed was 352 km/s, the nredonpnumber density was
12.6 cmi~3, the rms amplitude of the velocity fluctuations wis= 36.7 km/s, and the ve-
locity correlation length wak. = 2.83x 10° km. In this problem, you can think df; as
the largest-eddy size ardd as the approximate velocity of eddies of size (Here you are
making use of the fact that most of the velocity fluctuatioargy is in the largest eddies.)

(a) Use the Kolmogorov estimate for the turbulence cascaseepto estimate the tur-
bulent heating rate per unit mass (imgerg s1) for this interval of data. Note that
this formula provides only a very rough estimate of the ddbeating rate. Compare
your answer to the heating rate that is needed to explain dheadiabatic tempera-
ture profile of the solar wind. (See the earlier problem from Rasper.) Based on
this comparison, is it plausible that turbulent heatinglddee the dominant heating
mechanism in the solar wind near 1 AU?

(b) Suppose you were to look at the time series of velocitysnesaments for this data set
and calculate the temporal auto-correlation function
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The angle bracket§ . .) here indicate an average over the timé&lote thatC = 1 for
T=0andC — 0 ast — . (The latter is true because velocity fluctuations measated
sufficiently widely separated times are uncorrelated.) @efaition of the “correlation
time” 1¢ is thatt. satisfies the relatio€(1¢) = e 1 =0.368. What is the correlation
time for the velocity data considered by Matthaeus & Golds(®982)? Hint: this
guestion relates to Taylor’s frozen-in-flow hypothesisydfi were to take a snapshot
of the solar wind and record the value béalong the line connecting your spacecraft
to the Sun, you could compute a spatial autocorrelationtfon€spatia analogous to
the above temporal autocorrelation function, but with r andt — or. The spatial
correlation length (i.eL.c) would then be that value @ for which Cspatia(dr) = el

C(r)=

2. Critical Balance. For many years, the heliospheric physics community favidredypoth-
esis that the dominant source of proton heating in the sol@n@a and solar wind is resonant
cyclotron heating by high-frequency waves. The idea heteisvhen a wave has an angular
frequencyw equal (or nearly equal) to the proton cyclotron frequency,
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a proton’s gyromotion is in resonance with the electricdfiictuation associated with the
wave, leading to a strong interaction between the protortlamevave. In this case, protons

are strongly heated by the wave, and the wave is strongly ddrbg the protons. This
hypothesis of cyclotron heating has been called into qoediy evidence suggesting that

Qp (1)
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Alfv én-wave turbulence is responsible for much of the prototitngaand by the discovery
that the Alf\en-wave energy cascade is anisotropic, with< A at the small lengthscales
at which the Alf\en-wave turbulence dissipates. In this problem, you witllese this issue
by drawing upon the idea of “critical balance” in ABn-wave turbulence.

(a) Letus consider again the interval of slow-solar-winthdkescribed above from Matthaeus
& Goldstein (1982). Imagine that the turbulence is strond @&otropic at the “outer
scale”L; = 2.83x 10° km with X = 1. In other words, assume that at perpendicular
scaler | = L, the Alfvén wave packets are isotropic with = A anddvy, = Va.

Now, using the results in the lecture notes, derive an egmedor the value oA as a
function ofA | for values ofA | < L.

(b) In magnetized plasmas, protons move along helical pahgered on magnetic field
lines. The distance between one of these helical paths @&ncethiral magnetic field
line is the proton gyroradiugp,, which is given by

Qp’

wherev, is the speed of the proton in the plane perpendicular to thgnete field.

In this problem, you can take, to be the proton thermal speQdkBTp/mp. Evaluate

Qp andpp assuming thaB = 6 x 10° G andT = 10° K. (ks = 1.38x 10 16 erg K1,

My = 1.67x 10724 g; ¢ = 3 x 10'% cm/s;q = 4.80 x 1010 statcoul)

(c) Combining your results from the previous two questionajueateA | whenA; = pp.

(d) Evaluateva = B/./4mp assuming thaB = 6 x 107> G and that protons make up all of
the mass density, with a mean proton number density & @ 3.

(e) The frequency of an Alen wave is given by = kjva. For strongly turbulent Alfén
wave packets, you can estimate a characteristic wave fnegjLeswes ~ Va /A . For
critically balanced Alfven wave turbulence wity € (pp,L¢), at which value ofA |
will wegt have the highest value? Using your results from the abovstigms, compute
weff for wavepackets withh | = pp and compare this value witfp,.

(f) Based on this comparison, do you expect strong &tfwvave turbulence with | €
(pPp, Lc) to lead to efficient cyclotron heating of protons in the sel@md? Note: it's
possible that there could be some cyclotron heating by fiticns withA | < pp,
but one argument against this possibility is that the pretemd to average over such
fluctuations during their gyromotion, so that they don’téffethe fields in those fluc-
tuations very strongly. Wheh, < pp, other dissipation/heating mechanisms (Landau
damping, transit-time damping, and stochastic heatingpilme important, and these
may be more important than proton cyclotron heating forigegsg the turbulence. It
should be noted that at, < pp, the nature of the fluctuations change — in particular,
at these small “kinetic scales,” there is no Afvwave. There are, however, kinetic
Alfvén waves, whistler waves, Bernstein modes, and a number ef wtve types.
The nature and dissipation of turbulence\ats pp is an area of active research, with
many interesting, open questions.
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