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1. Spectra in the IRIS and other wavelength ranges

(a) Identify all spectral features (including any continuum you believe present) in the following

spectra of the Sun and the solar-like bright star α Cen A. Explain the rationale why you

assign a certain feature to a specific transition (not just a reference). Resources: Various

instruments have observed these wavelengths over many years: SKYLAB SO55,

SO62B; OSO-8, SMM-UVSP, HRTS, SUMER, IUE, spectrographs on Hubble.

Fig. 1.— UV spectra of the quiet Sun and of α Cen A, obtained with the SUMER instrument

on SOHO and the STIS instrument on the Hubble Space Telescope. Only those wavelengths

in the far UV observed by IRIS are shown.

(b) There are two kinds of transitions belonging to the boron isoelectronic sequence in these

data: list these transitions. One of these is an intercombination multiplet. How can these

“weak” transitions be so visible?
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(c) Why do you think there are no “coronal” lines in these spectra (those formed in the

coronae where plasma temperatures exceed 106K).

(d) How is any continuum formed? How are the brightest lines formed? (Hint: consider

broadly such things as the source function, Planck function, the Eddington-Barbier relation,

optically thin cases).

Fig. 2.— The broader UV spectra of Fig. 1.

(e) This figure shows the same UV spectra from 1170 to 1610 Å. Do you think IRIS is missing

anything terribly important? If so, what and why?

(f) These are two of the best spectra of their kind. Are you surprised by any differences in the

quality of the two datasets? If so or if not, say why.

(g) (Extra credit). Why does the α Cen spectrum have sharp dips in the line near 1334 Å?



– 4 –

2. Transfer equation, formal solutions

(a) Define the specific intensity of radiation Iν (units: erg cm−2 s−1 hz−1 sr−1) at frequency ν in

terms of energy associated with the passage of a packet of photons across unit area. Explain

its invariance properties and physical significance. By assuming that there exist sources

and sinks of radiation along a ray, derive the transfer equation along that ray in terms of

Iν , distance along the ray s, an emission coefficient jν (units: erg cm−3 s−1 hz−1 sr−1) and

absorption coefficient αν(units: cm−1).

(b) Define optical thickness tν in terms of αν and element of path length ds, where s measures

distance from a point along the ray to the observer. Explain its meaning in terms of the

photon mean free path (αν represents the probability that a given photon will interact with

the material along the ray: in the absence of sources the change dN in the number of photons

N along the ray is dN = −Nανds). Consider a path of length S through a tenuous gas with

jν 6= 0 and αν 6= 0 under conditions that tν ≪ 1. Write down an approximate solution

for the emergent intensity Iν(S) derived from the above transfer equation along this path.

Include any boundary conditions that you think are necessary.

(c) Write down the transfer equation in terms of tν and the “source function” Sν = jν/αν .

Explain the physical meaning of Sν (you might consider using the photon mean free path

λν = α−1
ν ).

(d) Consider a horizontally homogeneous, vertically stratified atmosphere: all variables are

functions of vertical height z only. Let θ be the angle a given ray makes with the vertical

direction, µ = cos θ, and let Iνµ denote the specific intensity along the rays defined by µ.

Write down the transfer equation for this ray in terms of the optical depth along the vertical

rays τν and µ (the optical depth is measured from the observer so it differs in sign from optical

thickness). By differentiating I(x) e−x with respect to x, and assuming Iνµ(τν) e−
τν
µ → 0 as

τν → ∞, show that the “formal solution” for the intensity along the ray is

Iνµ(τν = 0) =
1

µ

∫ ∞

0

Sν e−
τν
µ dτν

(e) Assuming that Sν = a + bτν , derive the Eddington-Barbier relation

Iνµ(τν = 0) = a + bµ = Sν(τν = µ)
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and interpret this result in terms of the photon mean free path. Why would this approxima-

tion fail for formation under optically thin conditions? Assuming that there is no incoming

radiation, (Iνµ = 0 for all µ < 0), derive similar expressions for the moments: mean inten-

sity Jν(τν = 0), flux Hν(τν = 0), and “K-integral” Kν(τν = 0). Interpret physically these

moments in terms of Iνµ(τν = 0).

(f) Assume you have optically thin conditions in a region above the Sun with zero intensity

coming up from the Sun’s disk. Write down an expression for the intensity of radiation

observed along a line of sight intercepting the disk in terms only of the emission coefficient.

If we observed slightly above the limb of the Sun, what would happen to the magnitude of

the intensity? Now assume that a line of Si IV (3 times ionized silicon) has an emission

cofficient integrated over the line at central frequency ν0 of the form jν0
= hν0

4π
n2A21 ergs s−1.

Write down statistical equlibrium equations for a 2 level atom in terms of coefficients A21,

C21, C12 (see endnotes). Re-write this in terms of the electron density ne, the abundance

of silicon, the fraction of silicon that is 3x ionized. Lastly, cast the derived intensity into

the form containing the emission measure that depends only on atmospheric properties ξ(T )

and the “kernel” function G(T ) for this specific line and ion.
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3. Two level atom in complete redistribution

(a) Consider an atom consisting of just two bound levels, labelled 1 and 2, which have energies

E1, E2 and degeneracies g1 and g2, embedded in a gas in which all particles obey Maxwell-

Boltzmann statistics at temperature T . Assume E2 > E1. The atom can make spontaneous

and induced transitions by radiation (Einstein A and B coefficients: see attached “useful

formulae”), and by collisions with other particles (e.g. electrons), at total rates given by

P12 = B12J + C12 sec−1, upwards

P21 = (A21 + B21J) + C21 sec−1, downwards

Write down an expression for the ratio of the population densities n (cm−3) of the levels,

n1/n2, under equilibrium conditions.

(b) Construct the source function Sν , assuming that the only sources of emission and absorption

at frequencies in the neighbourhood of the line (hν ≃ E2−E1), arise from radiative transitions

between these levels. Assume that the line is broadened such that it can both absorb and

emit radiation in proportion to the same function φν where
∫ ∞

0
φν dν = 1. The emission

coefficient jν and absorption coefficient αν are given by:

jν =
hν

4π
n2A21φν erg cm−3 s−1 hz−1 sr−1,

αν =
hν

4π
n1B12φν(1 −

n2g1

n1g2
) cm−1.

Explain why these coefficients have the forms given. Assume that contributions to φν are

strongly peaked around the frequency ν0 = (E2 − E1)/h. The source function becomes

independent of frequency: it is called the line source function SL. What is the physical

reason that the source function is independent of frequency? [Hint: you might consider the

frequency dependence of the mean free path λν and compare jνλν with ανλν.]

(c) Using the relationships between the A and B coefficients given in the attached “useful

formulae”, show that Sν becomes the line source function

SL =
2hν3

0

c2

1
n1g2

n2g1

− 1
.

What is the form of Sν if collisions dominate (n1/n2 approaches the Maxwell-Boltzmann

ratio), and what does this mean physically?
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(d) By combining parts (a) and (c), reduce this expression to the form:

SL = (1 − ǫ)J + ǫB

where

ǫ =
C21(1 − e−

hν0

kT )

A21 + C21(1 − e−
hν0

kT )

[Hint: eliminate B12, C12 in favour of B21 and C21 in your expression for n2/n1 in part

(a) using the “useful formulae” notes attached to this paper, get a solution for n1g2

n2g1

, and

substitute this into the expression for the source function. You should see that terms in J

cancel in the denominator, leaving J in the numerator only.] What is the physical meaning

of ǫ (it may be simpler initially to ignore the exponential term)?

(e) J must be derived from solutions to the transfer equation, which depends on the source

function SL and appropriate boundary conditions. Functionally, this can be written J =

Λ[SL] where Λ[. . .] denotes the appropriate integral operator. By substituting Λ[SL] for J in

the equation for SL derived in part (d), explain what is meant by “lambda-iteration” as a

numerical method to try to obtain self-consistent solutions to the resulting integral equation

for the source function. [Hint: write the current estimate of SL at iteration m as S
(m)
L , and

a new estimate as S
(m+1)
L .] Is this method a useful one in general? Explain. Lastly, outline

a numerical scheme based upon the concept of “operator splitting”: Λ = Λ∗ + (Λ − Λ∗), to

solve this problem, and identify some properties the operator Λ∗ should have to make the

scheme an attractive one.
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4. MHD regimes through the chromosphere.

(a) Magneto-convection generates fields of kG strength in the downflow lanes in the dense sub-

photosphere. These concentrations fill only a few percent of the area of the quiet Sun, they are

seen as “bright points” in the photosphere, and in the chromosphere they aggregate to form

the “chromospheric network”. Assume that the chromosphere is stratified hydrostatically

(it will also be guided by magnetic structure but if flows/ turbulent motions are subsonic,

hydrostatic stratification will be fine) such that

p(z) = p0e
−z/h, p0 = 3000 dyn cm−2, h = 150 km

(These values are typical for a chromospheric temperature ∼ 7000K). Write down the height

where the magnetic and thermal pressures are the same for field strengths of 1000, 100, 10

G.

(b) The electron pressure pe = nekTe ∼ 0.1 dyne cm−2 is roughly constant throughout the

chromosphere, but the total pressure (p(z) =
∑

i nikT ) varies as given above. Throughout

most of the chromosphere the proton density np ≈ ne. (Why?) Given a proton-neutral

collision cross section of σpn ∼ 10−15 cm2, plot the magnetization of protons = ωpτpn between

z = 0 and z = 1500 km, where τpn = 〈vσpn〉nn is the Maxwellian-averaged collision time for

a proton to encounter a neutral hydrogen atom, for a field strength of 1000G.

(c) The magnetic field will expand horizontally with height z to form a “canopy”. The

expansion is determined by the balance of forces including the j × B Lorentz force so that

generally j 6= 0. The magnetic field energy density ∼ B2 is expected to fall off less rapidly

with height z than p(z). (Why?) Assume B(z) = 1000exp(−z/H) with H ∼ 300 km and

B = |B|. Again plot the magnetization of protons = ωpτpn between z = 0 and z = 1500 km,

using B(z). Will ion-neutral collisions serve to damp out ordered motions of the bulk fluid

via friction (heating?). If so, where?

(d) Using B(z), plot the Alfvén speed cA(z) versus z between z = 0 and z = 1500 km, and

over-plot the sound speed for an adiabatic gas with a mean molecular weight (per H atom)

of 1.4. Identify places where you might expect sound and MHD waves to interact. Plot

the ratio β of magnetic to plasma pressures. Identify places where hydrodynamic stresses

likely dominate, and where magnetic stresses dominate. Explain why, if magnetic stresses

dominate, the “force-free field” limit of j×B ≈ 0 is a useful approximation. Will the corona

be expected to be force-free?
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5. Transport in a partially ionized atmosphere.

(a) Needed equations A “simple” hydrogen plasma consists of ions, electrons and neutrals

described using fluid equations. Assume neutrality (ni = ne), neglect, for simplicity, viscosity,

thermal forces and anisotropy of the coefficient of friction in a magnetic field. The equations

of motion for the electrons, ions and neutrals are

−mene
due

dte

−∇pe + meneg − en {E + ue × B} = −αe
j

en
+ αenw, (1)

−mini
dui

dti

−∇pi + minig + en {E + ui × B} = αep
j

en
+ αinw, (2)

−mnnn
dun

dtn

−∇pn + mnnng = αen
j

ene

− αnw, (3)

The frictional forces Rab between different particles a, b are described in terms of coefficients

α,

Rab = −αab(ua − ub) (4)

which have the properties

αab = αba,

αe = αep + αen = mepn/τep + menn/τen = men/τe, τ−1
e = τ−1

ep + τ−1
en ,

αn = αen + αin =
mnnn

τn
, τ−1

n = τ−1
ni + τ−1

ne ,

where ne = ni = n. τ values are average collision times. Collisions with neutrals are

dominated by those with ions, because momentum transfer is inefficient between particles of

very different mass. Thus

τen ≫ τin, αen ≪ αin, and ǫ = αen/αn ≪ 1.

(b) Manipulate the momentum equations such that expressions for center of mass motion of

the fluid, the electric current density, and the “ambipolar” flow are obtained in place of the

individual momentum equations. NOTE: In this way the coupling between the plasma and

the electromagnetic field is made clearer, since current density j is a source term for the

magnetic field B and the Lorentz force j×B enters into the bulk equation of motion. (The

center of mass flow velocity v, the electric current j, and the ion-neutral drift (“ambipolar”)

velocity w, are simply

v =
ρeue + ρiui + ρnun

ρ
≈

ρiui + ρnun

ρ
, (5)

j = −ene(ue − ui), (6)

w = ui − un. (7)
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Here, ρe = nme, ρi = nmi, ρi = nnmn, ρ = ρe + ρi + ρn ≈ ρi + ρn, and ξn = ρn

ρ
is the neutral

fraction. Here we have ignored terms of order me/mi.)

Derive the bulk equation of motion from the individual equations:

−ρ
dv

dt
−∇p + ρg + j× B = 0 (8)

Following Braginskii, solve for w and j from equations (1) - (3). Braginskii notes that when

ion-neutral drift accelerations occur more slowly than those for the collisions, then terms

of order dw/dt can be neglected compared with the collisional terms w/τ in the frictional

force. Then, with d
dt i

ui ≈
d
dtn

un ≈ d
dt
u, show that

w =
1

αn
(−G + ξnj ×B) +

ǫj

en
, where (9)

G = ξn∇(p − pn) − ξi∇pn ≡ ξn∇p −∇pn, (10)

where p = pe + pi + pn is the total pressure1.

Eliminate w in favor of G and j, the equation for j, “Ohm’s Law”, is:

E + v × B +
1

en
(∇pe − ǫG) −

ξn

αn

G × B =
1

σ
j +

ξ2
nB

2

αn

j⊥ +
1 − 2ǫξn

en
j× B, (11)

where j⊥ = b × (j × b) = j− j‖, with b = B/|B| and j‖ = (b · j)b.

NOTE: The three fluid equations of motion (equations 1 - 3) have been replaced with the

bulk equation of motion (8), the equation for ambipolar diffusion (9), and Ohm’s law (11).

Note that the latter two equations contain pressure gradient terms as well as electrodynamic

terms E + v × B, j. Pressure gradient terms do not appear in the conductivity (σ, a scalar

or tensor) in the traditional form for Ohm’s law j = σ(E + v × B).

(c) Energy dissipation To order v2/c2, the transformation equations of MHD include

E′ = E + v ×B (12)

B′ = B (13)

j′ = j (14)

1In the presence of gravity, a term me

mi

ρnρi

ρn+ρi

g should be added to the rhs of equation (10), but it is

neglected here since it is of order me/miρg ≪ pressure gradients and Lorentz forces.
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From Poynting’s theorem, the rate at which EM energy is converted to heat is given by E′ · j.

Eliminating E′ from equation (11), and neglect terms in G and pe in equation (11),

E′ · j =
j2‖
σ

+
j2⊥
σ∗
⊥

=
j2
‖ + j2

⊥

σ
+

ξ2
n

αn

(j× B)2 . (15)

Show that the conductivities are

σ =
e2nτe

me
,

1

σ∗
⊥

=
1

σ
+

ξ2
nB

2

αn
=

1

σ
(1 + 2ξnωeτeωiτi) (16)

Where τi = ninnmn

2αin(ni+nn)
. σ∗

⊥ is Cowling’s conductivity: when the plasma has a significant

neutral fraction ξn 6= 0, and when the electrons and/or ions are magnetized (ωτ ≫ 1), the

perpendicular conductivity is far smaller than the parallel component σ. Such conditions

are found in the solar chromosphere in particular. The photosphere has small values of τ

and the corona has ξn → 0, both making σ∗
⊥ → σ.

NOTE: While σ depends only on properties of particle impacts, σ∗
⊥ also depends on the three

momentum equations and accompanying assumptions. σ∗
⊥ is frequently used to describe the

dissipation rates by friction in partially ionized plasmas, because one need only evaluate the

electric current j and some thermal and magnetic plasma properties (ionization fractions,

collision times, gyrofrequencies) to obtain the energy dissipation, which can be obtained, for

example from a single fluid MHD calculation.

NOTE: The above energy dissipation rate originates from evaluating the rate of change of

EM energy according to Poynting’s theorem. Energy conservation implies that such energy

enters the plasma through the dissipation of ordered motions via frictional (and, if present,

viscous) forces. Braginskii therefore evaluates dissipation of the directed differential motions

represented by w and j by explicit evaluation of the total heat generated by friction:

Qf = −Rei · u− Ren · (u + w) − Rin · w (17)

= αeu
2 + αnw2 + 2αenu · w

=
j2
‖ + j2

⊥

σ
+

1

αn
(ξnj× B −G)2 . (18)

as expected. (A term of order ǫ2 ≈ me/mp has been omitted here. Setting G = 0 (i.e.

ignoring pressure gradients and gravity) we obtain the same result (equation 15) obtained

by evaluation of E′ ·j, as we should, under the assumed conditions (collision times ≪ dynamic

times). )
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RADIATION FIELD QUANTITIES, PLANE PARALLEL ATMOSPHERE

µ : Cosine of the angle a ray makes with the vertical direction

Iνµ : Specific intensity at frequency ν along rays defined by µ

(erg cm−2 s−1 hz−1 sr−1)

jν : Emission coefficient (erg cm−3 s−1 hz−1 sr−1)

αν : Absorption coefficient (cm−1)

Sν = jν/αν : Source function (erg cm−2 s−1 hz−1 sr−1)

Bν(T ) = 2hν3

c2
1

ehν/kT −1
: Planck function at temperature T (erg cm−2 s−1 hz−1 sr−1)

Jν = 1
2

∫ +1

−1
Iνµ dµ : Mean intensity (erg cm−2 s−1 hz−1 sr−1)

Hν = 1
2

∫ +1

−1
Iνµµ dµ : Flux

Kν = 1
2

∫ +1

−1
Iνµµ2 dµ : K-integral

φν : Absorption and emission line profile for an atomic transition (hz−1)

φν = δ(ν0 − ν) : Coherent scattering at frequency ν0

∫ ∞

0
φν dν = 1 : Normalization for line profile (both absorption and emission)

J =
∫ ∞

0
Jν φν dν : Frequency-averaged mean intensity (erg cm−2 s−1 hz−1 sr−1)

∫ ∞

0
xn e−x dx = n! Useful integral, for all non-negative integers n, 0! = 1

The following apply to transitions by collisions (C) and radiation (Einstein A and B

coefficients) between two atomic levels (labelled 1 and 2) of degeneracies g1 and

g2. Collisions are assumed to arise from impacts by particles with a Maxwell-

Boltzmann distribution function at temperature T .

E2 > E1 Level 2 lies above level 1

hν0 = E2 − E1 : ν0 is central frequency of the transition, where h is Planck’s constant

C21 ∝ niΓ21(T ) : 2 → 1 collisional rate by collisions with particles of density ni

(Γ21(T ) is usually constant or a weak function of T )

A21 : Spontaneous radiative 2 → 1 transition rate

B21J , [B12J ]: Induced radiative 2 → 1 [1 → 2] transition rate
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C12

C21

= g2

g1

exp
(

−hν0

kT

)

: ratio of upward to downward collisional transition rates

g2B21 = g1B12 : Ratio of Einstein B coefficients

A21

B21

=
2hν3

0

c2
: Ratio of Einstein A and B emission coefficients.


