
Shocks: Homework

1. Solar wind with Mach number Msw ≫ 1 hits the Earth’s magnetosphere. Assume the
magnetic field in the wind is small enough to be neglected.

A simplified of the day-side magneto-
sphere. Flow streamlines are shown as
solid curves originating at the Sun, far
to the left. The bow shock is a dashed
arc and the magnetopause is a thick solid
arc. The magnetosphere proper is dark
grey, with some white magnetic field lines
shown. The magnetosheath is the lighter
greay region between the bow shock and
the magnetopause.

a. Consider the central streamline, W–B–S, where the flow passes normal to the bow
shock at point B and then comes to rest at stagnation point S on the magnetopause.
Show that the temperature, TB, at the point B is some multiple of v2

sw, where vsw is
the solar wind speed. Assume a a fully ionized hydrogen plasma.

b. Assume the flow in the sheath is adiabatic and thus satisfies Bernoulli’s equation
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Find the temperature TS at the stagnation point. What is TS when vsw = 800 km/s?

c. By what factors are the plasma density at points B and S enhanced above the density
at point W ? Continue to assume Msw ≫ 1.

d. Now consider a point away from the central line, such as A, where the shock normal
makes an angle θ1 ≪ 1 with the incoming flow. In the limit Msw ≫ 1 show that the
flow is deflected by an angle ∆θ ≃ 3θ1.

e. For what incidence angles θ1 is the post-shock speed, including normal and tangential
components, greater than the local sound speed? i.e. supersonic.

f. The results from part c. suggest the flow in the sheath, at least near the central line
θ ≪ 1, is roughly incompressible (what is its Mach number?). An incompressible flow
can be written using a stream function v = ∇ψ × φ̂/r sin θ. The particular stream
function1

ψ(r, θ) = A

(

r4

R4
mp

− Rmp

r

)

sin2 θ ,

1This particular stream function also matches the normal flow and vorticity at the shock, but you don’t need
to show this. (Lighthill, J. Fluid Mech. 2, 1–32 [1957]).
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vanishes at r = Rmp, making it a flow around a spherical magnetopause. Assume
the bow shock is a spherical shell concentric with the magnetopause. Use the results
from d. to find its radius.

2. In a solar flare, rapid energy release heats a coronal plasma and drives material downward
along field lines. Because the flow is parallel to the field we can consider this a simple
hydrodynamic shock driving material at speed vf into a coronal material with sound speed
cs0. You may assume vf ≫ cs0 and use only the hypersonic jump conditions. This shock
then encounters the transition region which we can take to be a simple contact discontinuity

across which the density increases by a factor r ≫ 1. We wish to understand the effect of
this interaction and we will do so ignoring thermal conduction.2

a. What is the speed of the initial downward shock relative to the contact discontinuity?

b. First consider the limit in which the chromosphere is a solid wall: r → ∞. A shock
is reflected back upward from this wall. What is the Mach number of this shock?
What is the speed of the shock front relative to the contact discontinuity?

c. The material behind this shock is at rest and has been shocked twice: once by the
initial downward shock and once by the reflected shock. What is its density? What
is its pressure?

d. Assume now that r is large enough that the twice-shocked pressure is the same as in
part b. There is, however, a transmitted shock propagating into the chromosphere.
What is the Mach number of this shock in terms of r and vf/cs0?

e. What is the flow velocity in the region between transmitted and reflected shocks?
Which direction is this flow (upward or downward)?

2This idealized exercise may be considered a means of understanding the importance of conduction by ignoring
it. Observations show the flare shock drives chromospheric material upward — this is called chromospheric

evaporation.
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3. It is possible to determine the properties of a shock using measurements of the magnetic
field B, the proton density n, and the velocity v relative to the spacecraft. This must
be done without assuming knowledge of the shock’s normal n̂ or speed vs. Of course the
problem is complicated considerably by the presence of numerous fluctuations on top of
what would otherwise be a simple shock. Sophisticated methods have been developed to
pull the shock properties out of the fluctuating data. Here we demonstrate, using ideal
data, the principle with calculations simple enough to perform on a hand calculator. Two
sets of ideal measurements have been made by a spacecraft moving radially outward from
the Sun (the R direction) at v0 = 20 km/sec. Velocities are expressed in the (R, T,N)
coordinate system, relative to the spacecraft.

17:25UT (first) 17:49UT (second)
n [cm−3] 11.62 4.25

vR [km/s] 349.5 295.9
vT [km/s] 64.80 79.14
vN [km/s] 37.98 59.75

BR [nT] 0.027 1.000
BT [nT] -1.759 -0.908
BN [nT] -2.931 -1.474

a. Which of the measurements, first or second, is the pre-shock (upstream) region? Is
the radial component of the shock normal, n̂ · r̂, positive or negative?

b. Using the jump condition [[Bn]] = 0 show that the shock normal n̂ must be orthogonal
to [[B]].

c. Use the jump condition

ρvn[[v⊥]] =
Bn

4π
[[B⊥]] ,

to show that the velocity jump [[v]] must lie in the plane spanned by n̂ and [[B]].
This condition is known as co-planarity. Does it matter which reference frame v is
measured in to apply this principle?

d. Use the facts established in parts b. and c. to compute the shock normal n̂, from the
data. This will naturally be expressed as components in (R, T,N) coordinates. How
do you choose between 2 options?

e. Use n̂ and the magnetic field vectors to compute θ1 and θ2.

f. Use the two relations

n2
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=
M2

A1

M2

A2

, [[(M2

A − 1) tan θ]] = 0 ,

to find the Alfvén Mach numbers MA1 and MA2 for this shock.

g. What kind of shock is this? Fast, slow or intermediate?

h. Use the definition of the Alfvén Mach number

MA =
vn

Bn/
√

4πρ
,

to compute the velocity of the shock relative to the spacecraft.
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