Upper atmospheres of the Giant Planets

Luke Moore July 2014

- 1. True/False. Briefly explain your answer.
 - (a) The more energetic an auroral electron, the deeper in the atmosphere it is likely to be thermalized.
 - (b) The more energetic a solar photon, the deeper in the atmosphere it is likely to be absorbed.
 - (c) The use of recombination coefficients is enough to derive the electron density from the electron production rate in a region where transport is dominant.
 - (d) The solar flux at Neptune is 9 times less than at Saturn.
 - (e) Photons of 180 nm are effective ionizers.
 - (f) It is possible to define a temperature for a thermal electron population.
 - (g) The profile in altitude of the electron density always peaks at the same altitude as the profile in altitude of the electron production rate.
 - (h) Ion densities are roughly comparable to neutral densities near the ionospheric peak.
 - (i) Both ionospheric electrons and photoelectrons are thermal.
 - (j) The dominant loss process for H⁺ in giant planet ionospheres is from radiative recombination.

2. Saturn ring rain. Assume in this problem that H^+ and H_3^+ are the only ions present, and that they are in the photochemical regime (i.e., photochemical equilibrium holds, and transport processes can be neglected). You may neglect hydrocarbons.

Common aeronomy notation:

Number density of species X^+ (cm ⁻³)	$[X^+]$
Photoionization rate (s ⁻¹)	j
Charge exchange rate (cm ³ s ⁻¹)	k
Recombination rate (cm ³ s ⁻¹)	α

---- 2

For example, the reaction $H_{2^+} + H_2 \xrightarrow{k_1} H_{3^+} + H$ is a production reaction for H_{3^+} and a loss reaction for H_{2^+} . Its value depends on the reaction rate, k_1 , and on the number densities of H_{2^+} and H_2 . It would be written as:

$$L_{H_2^+} = P_{H_3^+} = k_1 [H_2^+] [H_2]$$

Values to use:

$[H_2] = 10^{10} \text{ cm}^{-3}$		-molecular hydrogen number density
$j_1 = 10^{-9} \mathrm{s}^{-1}$	$\mathrm{H}_2 + \mathrm{hv} \xrightarrow{j_1} \mathrm{H}_2^+ + \mathrm{e}^-$	-photoionization of H ₂
$j_2 = 10^{-11} \mathrm{s}^{-1}$	$H_2 + hv \xrightarrow{j_2} H^+ + H + e^-$	-dissociative photoionization of H2
$k_1 = 10^{-8} \mathrm{cm}^3 \mathrm{s}^{-1}$	$\mathrm{H^{+}} + \mathrm{H_{2}O} \xrightarrow{k_{1}} \mathrm{H_{2}O^{+}} + \mathrm{H}$	-charge-exchange (H ⁺ and H ₂ O)
$k_2 = 10^{-8} \mathrm{cm}^3 \mathrm{s}^{-1}$	$\mathrm{H_{3}^{+} + H_{2}O} \xrightarrow{k_{2}} \mathrm{H_{3}O^{+} + H_{2}}$	charge-exchange (H_3^+ and H_2O)
$\alpha_l = 10^{-12} \mathrm{cm}^3 \mathrm{s}^{-1}$	$\mathrm{H}^{+} + \mathrm{e}^{-} \xrightarrow{\alpha_{1}} \mathrm{H} + \mathrm{hv}$	-radiative recombination of H ⁺
$\alpha_2 = 10^{-7} \mathrm{cm}^3 \mathrm{s}^{-1}$	$H_{3^{+}} + e^{-} \xrightarrow{\alpha_2} OH + H \text{ (or } O + H_2)$) -dissociative recombination of H3 ⁺

- (a) Assume $[H^+] \gg [H_3^+]$. The only loss for H^+ is radiative recombination. What is the electron density?
- (b) Assume $[H^+] \gg [H_3^+]$. Now also assume there is an influx of water from Saturn's rings into its atmosphere. What value of $[H_2O]$ would reduce $[H^+]$ to 10^4 cm⁻³, the observed peak electron density?
- (c) Finally, relax the [H⁺] >> [H₃⁺] assumption. Using the values of [H⁺] and [H₂O] from (b), find [H₃⁺]. What is the dominant loss for H₃⁺ under these conditions?