Tutorial: The magnetic Connection between the Sun and the Heliosphere

Karel Schrijver
The connection between Sun and Earth ...
Overview

- From ideal to real ...
- Five pieces of the puzzle:
 1) The “streamer belt” of a model Sun
 2) Evolution of the Sun-heliosphere coupling
 3) Source regions of the solar wind
 4) Forecasting the quiescent solar wind
 5) Powering the solar wind (and the corona)
- Conclusions and some questions
An ideal world: solar/heliospheric model

- The large-scale coronal magnetic configuration can be approximated by a potential field below a “source surface” (1969).

- The surface magnetic field is dispersed and advected to a good approximation as a scalar (1964).

- The heliospheric/ecliptic magnetic configuration can be reasonably approximated by the “Parker spiral” (1958).
Simulation of the solar cycle

Visualizing the evolution of the solar wind source domains, as seen in a ‘corotating’ frame, over 1-1.5 magnetic cycles:

<table>
<thead>
<tr>
<th>Surface view</th>
<th>Surface grid</th>
<th>Source-surf. grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equatorial</td>
<td>Equatorial</td>
<td>Equatorial</td>
</tr>
<tr>
<td>40° North</td>
<td>40° North</td>
<td>40° North</td>
</tr>
<tr>
<td>90° North</td>
<td>90° North</td>
<td>90° North</td>
</tr>
</tbody>
</table>

Surface ϕ-θ map and neutral line: Streamer belt still: From ‘Earth’: Streamer belt envelope (27-d syn. Bartels frame):
Simulating photospheric activity

Relatively recent essential additions:
- magneto-convective coupling
- magneto-chemistry: fragmentation and collisions
- ephemeral-region population
Effects of large-scale flows

Differential rotation and meridional flow only, as viewed from 40°N
Large-scale solar field depends on source function, dispersal, meridional flow, and differential rotation.

- Good approximation of large-scale flux patterns, including polar fields.
The Sun through the cycle

- Total flux
- Flux in activity belt
- Polar-cap flux (>60°)
- Absolute
- Net
- Positive only
The large-scale coronal field is mostly potential.

It can be approximated remarkably well by an *electrostatic model*:
- charge distribution on the solar photosphere
- within a perfectly conducting sphere of ~5 \(R_\odot \).

SOHO/EIT 284Å with overlay of open-field boundaries from a PFSS model for different \(R_{ss} \) (see other examples at www.lmsal.com/forecast).
The “current sheet” for a model Sun

- The neutral line drifts around a 27-d synodic rate, as observed. *No magic needed!*

- Model:
 - One neutral line 90% of the time.
 - One additional polarity island: 10% of the time
 - Only ~30 islands throughout a full magnetic cycle.
 - Islands commonly pinch off from, and re-merge with, the neutral line.
 - Very few islands form at cusp: *the quiescent corona rarely blows bubbles.*
MHD sim. shows disconnected field in current sheet

Flux emergence in a dipolar field

Courtesy Pete Riley
MHD simulation shows disconnected field in current sheet.

MHD sim. shows disconnected field in current sheet

Red: initially closed; Blue: opened field
Black: initially open; green/cyan/yellow: successive openings/c closings
Circled: foot point of field line that closes and reopens
Boxed: foot point of field line that opens

White areas: field is not connected to the Sun at 30 solar radii (Lionello et al., 2005; ApJ 625, 463).

All Such regions are adjacent to the current sheet.
Successive cycles often differ strongly:

![Graph showing sunspot cycles over time](image)
Consequently the total flux on the Sun is modulated:
Polar-cap (>60°) absolute flux

And the polar-cap field “capacitor” does not simply alternate in strength or even polarity:

- Traditional model: no decay
- No polar polarity inversion?
What if flux “decayed” by, e.g., 3D transport?

The polar-cap flux behavior signals something is missing from our understanding:

- Half life: 2.8 yr

![Graph showing polar flux over time (1700-2000 years).](chart)
What if flux transport were modified?

With polar-cap behavior ‘regularized’*, the heliospheric and cosmic-ray fluxes are roughly anti-correlated:

* For example by introducing 3D flux transport (Schrijver & DeRosa, Baumann et al.) or by modulating flux transport (Wang et al., Schrijver et al.).
Source regions of the solar wind

Perspective changes over the past few years:

- Much of the IMF is rooted in active regions (even sunspots).
 - Luhmann et al., 2002, JGR 107, 10.1029
 - Neugebauer et al., 2002, JGR 107, A12, 13-1
 - Schrijver and DeRosa, 2003, SPh 212, 165

- Heliospheric field from up to a dozen source regions at cycle maximum (may be connected by thin channels).

- Much of the slow wind originates in the ARs whose fields generally lie near the cusp at low (i.e., IMF) latitudes.
Data assimilation into a global model

Assimilating (“inserting”) magnetograms into the model:
“Sources” of heliospheric field

- Magnetic plage regions
- Heliospheric field foot points

- ✔ Heliospheric field originates in coronal holes
- ✔ AND in active regions!
✓ IMF originates in coronal holes over unipolar network

AND in young and mature active regions!
At solar maximum, 30-50% of the interplanetary magnetic field connects directly to active regions (incl. sunspots)

Model: field open to the heliosphere

SOHO
MDI 2001/03/13 00:00:30

TRACE
171A 2001/03/13 00:13:10
At solar maximum, 30-50% of the interplanetary magnetic field connects directly to active regions (incl. sunspots).

Model: field open to the heliosphere
Sources of heliospheric field
(all directions from the Sun)

- Latitudes above 30 degrees contribute 20 to 80% of the total heliospheric flux.
IMF: plage vs. activity belt

- Latitudes above 30 degrees contribute no more than 40% of the IMF
- Some 30-50% of the IMF at cycle maximum originates in magnetic plages.
Streamers and the solar wind

Ulysses First Orbit

Ulysses Second Orbit

SWOOPS

Speed [km s⁻¹]

Outward IMF
Inward IMF

S
N

Average Monthly and Smoothed Sunspot Number

How important is the small stuff (I) ?

- Quiet-Sun “magnetic carpet”:
 - Large-scale patterns survive for months or more
 - Network flux concentration survive for at most a few days, and magnetic connections much less than a day, owing to emergence of many small bipoles (“ephemeral regions”)

![Image of magnetic patterns]

![Image of magnetic connections]
How important is the small stuff (II)?

- A “magnetic canopy” was thought to separate the strong network field from essentially field-free regions around the network in a closed-vault geometry. But then:
 - “Weak field” away from the network discovered in the mid 70s
 - Maybe “weak field,” but lots of flux: ~5 — 50 Mx/cm², on average ~20 Mx/cm²
 - Maybe not “weak,” but merely “small”: 10^{16-17}Mx compared to 10^{18-19}Mx?
The “intranetwork field” steals flux from the network, so that the field geometry is inconsistent with the classical canopy concept, while the connectivity into corona & heliosphere changes on minute-to-hours time scale!

Oh, and much of the quiet-Sun corona is not low-\(\beta\)!

(Schrijver and van Ballegooijen, 2005; also Hansteen …)
Photosphere-corona connection

- The “intranetwork field” steals flux from the network, so that
- the field geometry is inconsistent with the classical canopy concept.

Potential field above unipolar network and mixed-polarity intranetwork; side and top view
‘Incomplete knowledge’:

Having observations of only $\frac{1}{4}-\frac{1}{3}$ of the solar surface introduces substantial uncertainties (2nd half of the movie) not seen in a model with perfect knowledge (1st half of the movie).

Note the substantial field deflections from the sub-solar point to the photosphere!
The polarity pattern of the heliospheric field is forecast accurately more than a month into the future.

Not surprising: this pattern is dominated by the largest scales, which evolve slowly.

Around spot maximum, the source strength of the source-surface heliospheric field can be forecast accurately only a few days ahead of time, because (a) active regions evolve quickly, and (b) active regions are seen too late.
The polarity pattern of the heliospheric field is forecast accurately more than a month into the future.

Not surprising: this pattern is dominated by the largest scales, which evolve slowly.
Around spot maximum, the source strength of the heliospheric field can be forecast accurately only a few days ahead of time, because (a) active regions evolve quickly, and (b) active regions are “seen too late.”
The extended stellar atmosphere
- Cycle maximum: 30-50% of the IMF from ARs,
- significantly non-potential ~10-30% of the regions on the surface,
- with the wind perturbed by wide-angle CMEs ~15-20% of the time (during non-potential phases of ARs), and
- inadequate knowledge of much of the solar surface:
- PFSS source-region mapping must fail ~20% of the time.
Wang-Sheeley/Arge-Pizzo wind modeling ...
Wang-Sheeley/Arge-Pizzo wind modeling …

- Arge/Pizzo (2000) model:
 - Arge/Pizzo – field expansion (ratio of base to source-surface field strengths):
 \[C = 0.34 - 0.39 \text{ for 3-yr for sunspot numbers 10-25} \]
 - Our model – base flux density over average source-surface flux density:
 \[C = 0.38 \text{ for 3-yr for sunspot numbers 30-115.} \]
 Eliminate the worst 17%, then \(C = 0.71 \)

- Wind speed: \(v = a + b \left(\frac{B_{ss}}{B_{ph}} \right)^c \)
 - Arge/Pizzo: \(a = 270 \text{km/s}, \quad b = 410 \text{km/s}, \quad c = 0.4 \)
 - Our model: \(a = 280 \pm 40 \text{km/s}, \quad b = 1000 \pm 200 \text{km/s}, \quad c = 0.49 \pm 0.10 \)
 (Note: \(b \) is sensitive to magnetogram resolution)

- Wind interaction: \(v_{ij} = \left[\frac{(v_i - d) + (v_j - d)}{2} \right]^{-1/d} \)
 - Arge/Pizzo: \(d = 2 \)
 - Our model: \(d \in [-2, 2] – \text{unconstrained!} \)
All rotating stars with convective envelopes exhibit atmospheric magnetic activity.
Hypothesis:

Stellar dynamos are like that of the Sun, except for the frequency of active-region emergence.
Activity, rotation, and saturation

A star at 30x solar rate of flux injection is of merely moderate activity:

\[\frac{\Phi}{\Phi_\odot} \approx 10 \]
Simulations of activity

Simulated “Sun” from 40°N:

Present Sun

Active star (30x higher rate of flux injection), from 40°N:

Young Sun at ~500 Myr?
Wind from the once and future Sun

- Combination of solar and stellar observations constrains mass loss and angular momentum loss of the Sun in the distant past and future, and
- raises the question whether the mechanism which drives the wind also contributes significant power to (long) loops.
Sun-like star

Cycle maximum

Surface field

Corona (for YOHKOH’s SXT)

Traced field lines
30x solar emergence rate

Surface field

Corona (for YOHKOH’s SXT)

Traced field lines
Simulated magnetic field on a star like AB Dor (K0V, 15pc, 20-30Myr, P=0.51d), just prior to “cycle maximum”

by MacKay, Jardine, Collier Cameron, Donati, Hussain (2004)
Asterospheres

Combine observed Ly α profiles with models of wind-ISM interaction to derive mass loss rates:

- Observed after inter-/circumstellar absorption
- Model stellar profile
- Asterospheric absorption
The mystery of magnetic braking

\[\phi_A (R_{ss} \phi_*) \]
Model: astrospheric field

\[\phi_A \propto v_A^{1/2} \Omega \]
Inferred: astrospheric field

\[\beta = 1 \]
Theory: field balances flow

\[R_A (\dot{M}, \Omega) \]
Inferred: mass loss

\[\dot{M} (v_\infty, \phi_*) \propto \phi_* \]
Inferred: mass loss

\[F_X (\phi_*) \]
Observed: flux-flux

\[\Omega(t) \]
Observed: rotation-age

\[\dot{M} (v_\infty, F_X) \]
Observed: mass loss

\[L (\dot{M}, R_A, \Omega) \]
Theory: angular momentum

\[R_{ss} (\phi_*, v_A, \Omega) \]
Inferred: source surface

\[R_{ss} \propto v_A^{-0.5} \phi_*^{0.9} \]
Observed: surface field

\[\dot{M} (v_\infty, \phi_*) \propto \phi_* \]
Inferred: mass loss

\[R_A \propto v_\infty^{0.5} \]
Observed: surface field

\[L (\dot{M}, R_A, \Omega) \]
Theory: angular momentum
The mystery of magnetic braking

\[R_{ss} \propto V_A^{-0.5} \phi_*^{0.9} \]

\[\phi_A \propto V_A^{1/2} \Omega \]
Inferred: astrospheric field

\[\phi_* \propto \Omega^3 \]
Observed: surface field

\[R_A \propto V_\infty^{0.5} \]

\[M(V_\infty, \phi_*) V_\infty^2 \propto \phi_* V_\infty^2 \]
Inferred: wind power

Q: Why do surface and astrospheric fields scale differently with activity?
A: Coronal field is forced open lower as activity decreases
 (causes: field expansion in a dipolar geometry and wind acceleration).
Model solar corona, based on observed magnetic field, rendered for YOHKOH/SXT Al/Mg filter

\[F_H = 8 \times 10^4 B^{1.0\pm0.3}(10^{10}/2L^{1.0 \pm 0.5} \pm 1) \text{ ergs/cm}^2/\text{s} \]
The appearance of the corona depends on the properties of coronal heating.

These sample images show some of the “worst-fit” cases.
Model solar corona, based on observed magnetic field, rendered for YOHKOH/SXT Al/Mg filter.

\[F_H = 8 \times 10^4 B^{1.0 \pm 0.3}(10^{10}/2L^{1.0 \pm 0.5} + 1) \text{ ergs/cm}^2/\text{s} \]
Conclusions and some questions

- PFSS-like modeling works well most of the time.
- Reconnection through the neutral-line/current-sheet can likely take care of the evolution of the heliospheric flux.
- Much of the IMF connects directly to ARs (& spots).
- Much of the fast wind is likely rooted in dynamic small-scale field. What does that imply for, e.g., the Solar Probe?
- Does the wind driver also dominate in long closed loops?
- How best to improve understanding of wind driver(s)? At least, improve our understanding of photosphere-heliosphere coupling
 - better coverage of the full sphere (Sentinels & FarSide); inclusion of major current systems in active-region coronae (Solar-B, SDO, & GBO); long-term sampling of inner heliosphere (IHS, Orbiter); improved understanding of polar-cap behavior (Orbiter); …