Hybrid Simulations: Numerical Details and Current Applications

Dietmar Krauss-Varban

…and numerous collaborators

Space Sciences Laboratory, UC Berkeley, USA

Boulder, 07/25/2008
Content

1. Heliospheric/Space Plasmas, Solar Wind-Magnetosphere Interaction: *Kinetic Physics*
2. Computational Models and Numerics
3. Example Simulations
4. Outlook

- Plasma is (mostly) magnetized
- Plasma is (mostly) collisionless
Why a kinetic approach?
Physics of the Interaction: Regions – Overview

- not to scale -
Why a kinetic approach?

Thermal and other Plasma Properties

* Temperature anisotropy (sheath, tail)
* Turbulence (upstream, sheath, solar wind, corona)
* Specific heat ratios (sheath, MP, solar wind, corona)
* Energetic particles (shocks, magnetosphere, tail)
* Unmagnetized ions (current sheets)
* Heat flux (solar wind, current sheets, boundary layers)
Why a kinetic approach?

Signatures and Coupling

* Field-aligned currents (*magnetosphere, tail*)
* Energetic ions (*shocks, cusp, tail, ring current*)
* Heat flux (*sheath, MP, solar wind*)
* Poynting flux (*magnetosphere, tail*)
* Small spatial/temporal scales (*micro physics/all*)
Physics of the Interaction:
Time Scales (1AU/MS)

gyro frequency: \(\Omega_{ci} = \frac{eB}{mc} \)

\(\tau_{ci} \sim 0.5 \) to 10 s

plasma frequency: \(\omega_{pi} = (4\pi ne^2/m)^{1/2} \)

\(\omega_{pi} / \Omega_{ci} \sim 100 \) to 10,000

→ Electrons on much faster time scales
Physics of the Interaction:
Spatial Scales (1AU/MS)

gyro radius: \[\rho = \frac{v_{th}}{\Omega_{ci}} \]
\[\rho_i \sim 20 \text{ to } 200 \text{ km} \]

for \(T_e \sim T_i \Rightarrow \rho_e \sim \rho_i / 40 \)

inertial length: \[\lambda = \frac{c}{\omega_{pi}} \] (skin depth)
\[(\rho_i / \lambda_i)^2 = \beta_i \sim 0.1 \text{ to } 5 \]

→ Electrons on much smaller spatial scales
2. Computational Models
Computational Models:
Fluid Versus Kinetic Approach

• Idealized particle motion, moments, Maxwell’s equations, closure relations → fluid models:

 MHD

• General particle motion, Maxwell’s equations, self-consistent wave-particle interaction, few idealizations → kinetic models:

 Vlasov and Particle Codes
Computational Models: Strengths and Weaknesses

• MHD codes:
 - very successful
 - early-on large-scale
 - many time steps
 - good conserv. properties
 - “easily” paralleled
 - “easy” non-uniform grids

• Particle Codes:
 - historically, successful on smaller scales
 - can address kinetic instabilities & waves, anisotropies, energization, thermalization, boundary layers, mass- and energy transport
Computational Models:
Types of Kinetic Codes

- explicit or implicit codes
- relativistic, e-m full-particle codes
- electrostatic codes
- Vlasov codes vs. PIC codes
- Darwin codes
- hybrid codes (kinetic ions, electron fluid)
Hybrid Codes: Algorithms

• Early codes:
 Auer et al., 1962, 1971; Forslund & Friedberg 1971;
 Chodura, 1975; Sgro & Nielson 1976

• Leroy et al. (1981): 1-D implicit
 Swift & Lee, 1983; Hewett, 1980

• Harned (1982): predictor-corrector
 Winske & Quest, 1986; Brecht & Thomas, 1988

• Fujimoto (1989): velocity extrapolation

• Horowitz (1989): iteration
Hybrid Codes: Algorithms

Some recent codes:

One-Pass (Omidi and Winske, 1995; Fujimoto, Thomas)

Moment Method (Quest, 1983; Matthews, 1994)

Improved Predictor-Corrector (efficient + substepping, Krauss-Varban, 2005)
Hybrid Codes: PIC Method

- “Finite size” particles, follow motion
- Collect & interpolate moments onto grid
- Solve e.m. fields on grid
Hybrid Codes: Equations

- **Electrons:**

 - massless, quasi-neutral fluid

 \[en_e = q_i n_i \]

 - momentum equation

 \[
 \frac{d}{dt} n_e m_e v_e = 0 = -e n_e \left(\mathbf{E} + v_e \times \mathbf{B}/c \right) - \nabla \cdot \mathbf{P}_e
 \]

 - closure relation model:

 scalar pressure with const. \(T_e \), or adiabatic, or pressure tensor
Hybrid Codes: Equations

- Ions:

 - particle advance

 \[m_i \left(\frac{\partial}{\partial t} \right) v_i = q_i \left(E + v_i B/c \right) \]

 \[\left(\frac{\partial}{\partial t} \right) x_i = v_i \]

 \[\rightarrow \text{leapfrog} \]

 - collect moments (charge density, current) on grid
Hybrid Codes: Equations

- Electromagnetic fields
 - Faraday’s law
 \[
 \frac{\partial}{\partial t} B = -c \nabla \times E
 \]
 - Ampere’s law
 \[
 \nabla \times B = 4 \pi J /c = 4\pi q_i n_i (v_i - v_e) /c
 \]
 - Electric field from electron momentum equation
 \[
 E = -v_i \times B /c - \nabla p_e / (q_i n_i) - B \times (\nabla \times B) / (4\pi q_i n_i)
 \]

→ State equation for E, time-advance for B, plus leapfrog means: information is not necessarily available at points in time when needed
Normalization

• spatial scale: \(c/\omega_{pi} \)
• velocity: \(c \)
• temporal scale: \(\omega_{pi}^{-1} \) (in code), \(\Omega_{ci}^{-1} \) (input/output)
• B: “Bo” and \(\omega_{pi} / \Omega_{ci} \)
• \(\rightarrow E: \) \(v_A \) \(B_0 \) and \((\omega_{pi} / \Omega_{ci})^2 \)
• temperature: “\(\beta \)” – for fictitious species of unit density in unit field
• density: “\(n_0 \)"

\(\rightarrow \) With this normalization, simulation becomes independent of actual value of \(\omega_{pi} / \Omega_{ci} \)
Popular Hybrid Code Variations

- one-pass
- CAM-CL (moment method)
- predictor-corrector
- other variations (electron energy equation, finite electron mass, electron pressure tensor)

→ Codes are distinct in the way they deal with the fact that E, B, v, and n are not available at the same time(s)
Flow Charts:

Simple Explicit Method vs. Predictor-Corrector

- substepping
- v-moment evaluation
Moment Methods (CAM-CL)

- Use moment method to advance unknown velocity or current density $\frac{1}{2}$ step ahead
- Faster than additional particle push required in P-C
- Collect appropriate moments and apply a separate equation of motion
- CAM-CL:
 - current density \rightarrow easier to include multiple species
 - advective term absent (included via time centering)
 - no ion pressure tensor required

Matthews, 1994
Numerical Properties:
Drifting Plasma Regions with Anti-Parallel Fields

![Graph showing numerical properties with lines for different methods: Predictor-Corrector, IOP, and CAM-CL. The y-axis represents E_\perp ranging from 10 to 0.1, and the x-axis represents $\Delta t/\Omega_p^{-1}$ ranging from 0.02 to 0.00125. The graph illustrates the decline of E_\perp with increasing $\Delta t/\Omega_p^{-1}$ for each method.]
Numerical Properties:
Drifting Plasma Regions with Anti-Parallel Fields

Graph showing the behavior of E_\perp over time t. The graph compares different methods (Predictor-Corrector, IOP, CAM-CL) with their respective lines and markers.
Numerical Properties:
Dispersion Relation of Parallel Whistlers

\[(x^2/2 + \sqrt{(x^4/4 + x^2)})\]

Small k approximation \(= x + (x^2)/2 + (x^3)/8\)

Large k approximation \(= x^2 + 1 - 1/(x^2)\)
Numerical Properties:
Dispersion Relation of Parallel Whistlers

\[\Delta t_{\text{max}} \]

\[t_{\text{min}} = \frac{dx}{v_{ph}} \]
(Small \(dx \)) \[t_{\text{min}} = dx^{**2/\pi} \]

Graph showing the relationship between \(dx \) and \(\Delta t_{\text{max}} \).
CFL-Condition Example:
Solar Wind Reconnection
Example: Solar Wind Reconnection

\[v_{ph} = \omega/k ; \quad k = \frac{\pi}{\Delta x} = 15.7 \quad (\Delta x = \Delta y = 0.2) \]

\[\Rightarrow \Delta t_{\text{max}} = \frac{\Delta x}{v_{ph}} = \frac{\Delta x^2}{\pi} \sim 0.013 \]

Low density regions:

(a) unlimited, \(n \sim 0.05 \, n_o \) \(\Rightarrow \) marginally unstable at \(\Delta t = 0.01 \) and 20 substeps

(b) artificially limited to \(n > 0.1 \, n_o \) \(\Rightarrow \) stable at \(0.01/8 = 0.00125 \)

... substepping of more than 8-16 rarely useful
Some Examples in Detail:

All examples run on (fast, 64-bit AMD) single CPU!

• Thin current sheets and reconnection in the magnetotail, the solar wind, and the low corona

Common theme: high resolution (separation of scales) and/or low ion beta require very small cell size

• Interplanetary shocks and SEPs

• Global simulations of the magnetosphere
Generic High-Resolution Reconnection

- density -

- current -
Interplanetary Shocks
and
Solar Energetic Particles

- numerical considerations -
Interplanetary Shocks and SEPs

• Black-box Models and Source Description

• Role of Simulations in SEP models

Reames, 1999

Figure 3.2. Intensity-time profiles at different energies for the large 1989 October 19 event show time profiles with intensity peaks near the time of shock passage even at very high energies at 1 AU.
SEP Shock Sources:

1 \frac{c}{\omega_p} \quad \text{or} \quad v_o/\Omega_p

\sim 100 \frac{c}{\omega_p}

>10^4 \frac{c}{\omega_p}

1 \text{ AU}

downstream

shock source description

upstream
Scales and Extrapolation

Conservative estimate:

Assume target energy of 1MeV.
Convected gyro radius in 6nT B-field 10^5 km $\sim 10^3 \frac{c}{\omega_p}$
Need several resonant λ in system in 1 direction
→ e.g., $10,000 \times 500 \frac{c}{\omega_p}$ (assuming 2-D).
Typical time step $0.01 \Omega_p^{-1}$, $2.5 \cdot 10^6$ pp/s / CPU
1 hour of real time (\simtransit time at $M_A = 5$)
→ 5 days on 40 CPUs

1. power-law → extrapolation
2. quasi-linear estimate too restrictive
3. energetic tail (seed particles) can be described by separate population
Shock Set-up and Overview

\[T_{||} \quad \text{and} \quad B_z ; \quad M_A = 6.0, \quad \theta_{Bn} = 30^\circ \]
Ion Distributions: quasi-parallel case

Upstream Distribution: Evolution over Time

$\Omega_c t = 0$ [40] 320

$M_A = 6$

$\theta_{Bn} = 30^\circ$

Upstream Distribution: Approximate Power Law of Tail

$M_A = 6$

$\theta_{Bn} = 30^\circ$
Ion Distributions: quasi-parallel case

Convergence with simulation domain size

$M_A = 6$
$\theta_{Bn} = 30^\circ$

$x_{\text{max}} = 800 \, \frac{c}{\omega_{pi}}$
$x_{\text{max}} = 1600 \, \frac{c}{\omega_{pi}}$
Modeling Tail/Seed Population with κ-Distribution

- reaches higher energies, provides better statistics in wing
- combined Maxwellian / κ-distribution can model actual solar wind superthermal ions
Bow Shock Simulations

here: effect of resistivity model(s)

why add resistivity?
constant resistivity
parameter-dependent resistivity
Cuts from Upstream to Magnetopause

\[\eta = 0.0 \]

\[\eta = \eta(\eta, B) \]

\[\eta = \eta_0 j^4 \]

\[\eta = \text{const.} \]
3-D global still requires significant computational resources on large clusters…

Karimabadi et al., 2006
large-scale, but localized 3-D simulations: magnetotail and ionosphere
Other Numerical Details…

- loss of cache memory correlation/ particle sorting
- energetic particles: Courant condition
- formulation of equilibria/ initialization
- boundary conditions
- low noise / linear methods
- inclusion of dipole field etc.
- parallel codes / domain decomposition
- diagnostics
Summary

- Hybrid simulations are being used successfully for a large range of topics from local to global 3-D.
- While much current research is done on parallel supercomputers, many significant problems, also in 3-D, can be addressed on single CPUs.
- Various modern versions of the Hybrid code converge well with time step, and give comparable results in most circumstances.
- Some versions are more diffusive.
- The predictor-corrector code is often the best method for challenging situations.