Energetic particles and their detection in situ
(particle detectors)
Part III

George Gloeckler

University of Michigan, Ann Arbor, MI
University of Maryland, College Park, MD
Energy Analyzers

- To measure (select) the energy of low energy ($\leq \sim 100$ keV/charge) charged particles, electrostatic and magnetic energy analyzers are used in space instruments.

- Magnetic analyzers are bulky and heavy compared to electrostatic analyzers, and require magnetic shielding to prevent interference with magnetic field measurements on the same spacecraft.

- Electrostatic analyzers often use high voltages that require special care to prevent discharge.

- Incorporating UV suppression is essential since most detector systems (SSDs, CEMs, MCPs) placed behind energy analyzers are sensitive to UV.

- Three types of electrostatic analyzers are discussed:
 - Retarding Potential Analyzer (RPA) for low energies (few eV to \sim few keV/e).
 - Spherical and Cylindrical Section Analyzers (ESA) for medium energies (~ 0.1 to ~ 20 keV/e).
 - Small-Angle Deflection Analyzers (SADA) for high energies (up to a few MeV/e).

- Many different configuration of analyzers are used, but they all operate by using various electric field configurations to allow only particles in a selected energy/charge (ε) window ($\varepsilon_1 < \varepsilon < \varepsilon_2$) to pass through the system.
• The RPA consists of three highly transparent metal grids, an aperture stop (to define the acceptance geometry) and support structure.

• It is a simple device with a large acceptance area and geometrical factor.

• Its disadvantage are:
 - upper energy range is limited to ~6 to 8 keV/e
 - UV suppression is very difficult

• The energy of incoming ions is determined by applying to the central metal grid a time-varying, dc-biased square wave potential that varies from \(V_1 \) to \(V_1 + \Delta V \) (\(V \) and \(\Delta V \) can be changed).

• Ions with 'perpendicular' energies, \(\frac{1}{2} m v_1^2 < q V_1 \), are rejected, those with \(\frac{1}{2} m v_1^2 > q V_2 \) are accepted and ions with energies in between are either accept or reject depending on whether the modulating voltage is in its high or low step.
Spherical and Cylindrical Section Analyzers (ESA)

- Charged particles are deflected by the electric field between the inner and outer concentric spherical (or cylindrical) section electrodes.

- Only particles having the right energy per charge ε and arrival directions will pass through the entrance aperture and ESA to be detected without first hitting one of the electrodes.

- The mean energy per charge ε of the particle arriving at the detector is

 $$\varepsilon \approx 0.5\left(\frac{V_{\text{out}} - V_{\text{in}}}{\ln(R_{\text{out}}/R_{\text{in}})}\right) \approx 0.5\Delta V/(\Delta R/<R>)$$

- $\Delta R = R_{\text{out}} - R_{\text{in}}$ and $<R> = (R_{\text{out}} + R_{\text{in}})/2$

- The energy per charge resolution is

 $$\Delta \varepsilon / \varepsilon \approx \Delta R/<R>$$

- The acceptance angle α is also

 $$\alpha \approx \Delta R/<R>$$

- The analyzer constant K is

 $$K = \varepsilon / \Delta V \approx 0.5<R>/\Delta R$$

- An analyzer constant of 20 can be achieved with $<R> = 20$ cm and a gap between the plates $\Delta R = 0.5$ cm.
Small Angle Deflection Analyzer (SADA)

- Charged particles pass through a multi-slit collimator (which defines their incoming directions) and are then deflected by the electric field between the upper and lower deflection plates.
- Only particles having the right energy per charge ε will pass through the narrow slit and are detected (alternatively, a position-sensitive detector could be used to measure ε).
- The mean energy per charge ε of the particle arriving at the detector is
 \[\varepsilon \approx (V_{\text{up}} - V_{\text{lo}}) L^2 / (4 h \delta) \]
 where L and h are average length and separation of deflection plates.
- The energy resolution is $\Delta \varepsilon / \varepsilon \approx \Delta \delta / \delta$ where $\Delta \delta$ is the slit width.
- The analyzer constant $K = L^2 / (4 h \delta)$ and the acceptance angle $\alpha \approx h / (2L)$.

The main advantage of a SADA is that particles up to several MeV/charge can be deflected since K can be large and large deflection voltages can be supported.

UV trapping is effective.
Time-of-flight (TOF) – Energy detector

- Measure time-of-flight, τ, between foil and detector separated by L (typically ~ 10 cm)
- Measure energy E of particles in the detector

Particle mass: $m = 2E \cdot (\tau/d)^2$

Mass resolution: $(\Delta m/m)^2 = (\Delta E/E)^2 + (2\Delta \tau/\tau)^2 + (2\Delta d/d)^2$

Typical resolutions: $\Delta E = 35$ keV; $\Delta \tau = 150$ ps