Sizes
Tilts and Obliquities

Offset Tilted Dipole (poor) Approximation
Multipole coefficients / Dipole
Indicates degree of complexity

Stanley &
Bloxham
2006
• Did Moon ever have dynamo?
• Mars' dynamo died >3.5 BYA.
Bow Shock:
• Kinetic energy \rightarrow thermal energy
• Flow diverted around obstacle
• $\sim11\%$ less pressure at MP than in upstream SW
Mercury: Extreme solar wind conditions -> exposed planet

Slavin et al. 2010

Mars: Weak, irregular field -> bumpy surface + changing topology

David Brain
SW ram pressure <=> internal magnetic field pressure

\[\rho_{sw} V_{sw}^2 = B_o^2 \frac{(R_p/r)^6}{2\mu_o} \]

BUT what about currents at the magnetopause? \(\rightarrow 2B_{\text{dipole}} \)

\[\rho_{sw} V_{sw}^2 = (2B_o)^2 \frac{(R_p/r)^6}{2\mu_o} \]

Solve for \(r \Rightarrow R_{\text{MP}} \)

\[
\frac{R_{\text{MP}}}{R_{\text{planet}}} = 2^{1/3} \left[\frac{B_o^2}{2\mu_o \rho_{sw} V_{sw}^2} \right]^{1/6}
\]
Yes, I am being a bit sloppy here...

For more comprehensive treatment of magnetosheath, magnetopause (including details of the history) see 2012 HSS lecture by John Dorelli.

http://www.vsp.ucar.edu/Heliophysics/pdf/
DorelliTerrestrialMagnetosphere.pdf

And lecture from 2011 from Toffoletto

I am keen to compare planetary magnetospheres – and comparison with Earth.
Dipole Magnetic Field in Solar Wind

SW Ram Pressure \leftrightarrow Magnetic Pressure

\[\frac{R_{MP}}{R_{\text{planet}}} \sim 1.2 \left[\frac{B_o^2}{2\mu_0 \rho_{sw} V_{sw}^2} \right]^{1/6} \]

Chapman-Ferraro Distance
\[\frac{R_{CF}}{R_p} \sim 1.2 \left\{ \frac{B_0^2}{(2 \mu_0 \rho_{sw} V_{sw}^2)} \right\}^{1/6} \]

Quick chat with your neighbors....

- How does \(\rho_{sw} \) vary with distance from Sun? \(\sim 1/D^2 \)
- How does \(V_{sw} \) vary with distance from Sun? \(\sim \text{constant} \)
- How does \(\left\{1/\rho_{sw} V_{sw}^2 \right\}^{1/6} \) vary with distance? \(\sim D^{1/3} \)
\[\frac{R_{CF}}{R_p} \sim 1.2 \left\{ \frac{B_o^2}{2 \mu_0 \rho_{sw}} V_{sw}^2 \right\}^{1/6} \]

<table>
<thead>
<tr>
<th></th>
<th>Mercury</th>
<th>Earth</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
<th>Neptune</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_o) Gauss</td>
<td>.003</td>
<td>.31</td>
<td>4.28</td>
<td>.22</td>
<td>.23</td>
<td>.14</td>
</tr>
<tr>
<td>(\frac{R_{CF}}{R_M}) Calc.</td>
<td>1.4 (R_M)</td>
<td>10 (R_E)</td>
<td>46 (R_J)</td>
<td>20 (R_S)</td>
<td>25 (R_U)</td>
<td>24 (R_N)</td>
</tr>
<tr>
<td>(R_M) Obs.</td>
<td>1.4-1.6 (R_M)</td>
<td>8-12 (R_E)</td>
<td>63-92 (R_J)</td>
<td>22-27 (R_S)</td>
<td>18 (R_U)</td>
<td>23-26 (R_N)</td>
</tr>
</tbody>
</table>
Magnetospheres scaled by stand-off distance of dipole field

<table>
<thead>
<tr>
<th></th>
<th>M/M_\oplus</th>
<th>M_{Dipole}</th>
<th>M_{mean}</th>
<th>M_{Range}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>$\sim 8 \times 10^{-3}$</td>
<td>1.4 R_M</td>
<td>1.4 R_M</td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>1</td>
<td>$10 R_E$</td>
<td>$10 R_E$</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>600</td>
<td>$20 R_S$</td>
<td>$24 R_S$</td>
<td>22-27* R_S</td>
</tr>
<tr>
<td>Jupiter</td>
<td>20,000</td>
<td>$46 R_J$</td>
<td>$75 R_J$</td>
<td>63-92# R_J</td>
</tr>
</tbody>
</table>

Inflated magnetospheres of Jupiter & Saturn due to HOT PLASMAS

Note bimodal average locations
* Achilleos et al. 2008 # Joy et al. 2002
Earth ~ Dipole

\[R_{mp} \sim (\rho V^2)^{-1/6} \]

solar wind \(\rho V^2 \)

10 \(R_E \)

Jupiter

\[R_{mp} \sim (\rho V^2)^{-1/3} \]

solar wind \(\rho V^2 \)

100 \(R_J \)
Earth \sim Dipole

\[R_{mp} \rightarrow 0.7 \ R_{mp} \]

solar wind \(\rho V^2 \)

\boxed{x10 \ Solar \ wind \ pressure}

Jupiter

\[R_{mp} \rightarrow 0.5 \ R_{mp} \]

solar wind \(\rho V^2 \)

Factor \sim 10 \ variations \ in \ solar \ wind \ pressure \ at \ 5 \ AU

\rightarrow \ observed \ 100-50 \ R_j \ size \ of \ dayside \ magnetosphere
\[\rho_{sw} V^2_{sw} = \frac{B^2}{2\mu_0} + nkT \]
Dynamics
Dungey Cycle

Dynamics at Earth driven by the solar wind coupling the Sun's magnetic field to the Earth's field

- Variable opening & closing rates
- Must be equal over time to conserve magnetic flux
\[\mathbf{E}_{\text{convection}} = -\zeta \mathbf{V}_{\text{SW}} \times \mathbf{B}_{\text{SW}} \]

\(\zeta \approx \) efficiency of reconnection
\(~10-20\%\)

\(\mathbf{V}_{\text{convection}} \approx \zeta \mathbf{V}_{\text{SW}} \left(\frac{R}{R_{\text{MP}}}\right)^3 \)

(where 3 power assumes a dipole - in reality, the flow is not uniform and the power somewhat less)

(*strictly speaking not convection but advection or circulation)
Solar Wind

Connected to solar wind

Closed magnetic field

Polar view
Reality = Messy & 3D
Dynamics

Dayside magnetopause
- Response to B_{SW} direction
- Solar wind ram pressure

Tail Reconnection
- Depends on recent history of dayside reconnection and state of plasmasheet

Space Weather!
\(V_{co} \sim \Omega \times R \)

\(V_{\text{convection}} \sim \xi V_{SW} (R/R_{MP})^3 \)

Fraction of planetary magnetosphere that is rotation dominated is...

\[
\frac{R_{pp}/R_{MP}}{\sim [r_p R_{MP} \Omega / \xi V_{SW}]^{1/2}} \propto \Omega^{1/2} \mu^{1/6} / (\rho_{SW})^{1/12} V_{SW}^{2/3}
\]

Where \(r_p = \) planetary radius

\(\mu = \) magnetic moment of planet \(B_o R_p^3 \)
\[V_{\text{co}} \sim \Omega \times R \]

\[V_{\text{convection}} \sim \zeta V_{\text{SW}} (R/R_{\text{MP}})^3 \]

What if... How would location of plasmapause change?

1. Reconnection more/less efficient at harnessing the solar wind momentum
2. Planet’s spin slows down
3. Planet’s field is stronger
Solar-wind vs. Rotation-dominated magnetospheres

\[\frac{R_{\text{plasmapause}}}{R_{\text{Planet}}} = \]

6.7 \hspace{1cm} 350 \hspace{1cm} 95

Assumptions:
1. Planet’s rotation coupled to magnetosphere
2. (Large-scale) Reconnection drives solar wind interaction
Plasma Sources
<table>
<thead>
<tr>
<th></th>
<th>Mercury</th>
<th>Earth</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
<th>Neptune</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{max} cm$^{-3}$</td>
<td>~1</td>
<td>1-4000</td>
<td>>3000</td>
<td>~100</td>
<td>~3</td>
<td>~2</td>
</tr>
<tr>
<td>Composition</td>
<td>H$^+$</td>
<td>O$^+$ H$^+$ Ionosphere</td>
<td>O$^{n+}$ Sn +</td>
<td>O$^+$ H$_2$O$^+$ H$^+$ Enceladus</td>
<td>H$^+$ Ionosphere</td>
<td>H$^+$ N$^+$ Triton Ionosphere</td>
</tr>
<tr>
<td>Source kg / s</td>
<td>?</td>
<td>5</td>
<td>700-1200</td>
<td>70-200</td>
<td>~0.02</td>
<td>~0.2</td>
</tr>
</tbody>
</table>
Earth Sources of Plasma (5 kg/s):
Solar Wind + ionosphere mixed (over the poles) into magnetotail and convected sunward
Ionosphere: H^+ He^+ O^+
Solar Wind: H^+ He^{++}

Earth Plasma Flux 5 kg/s

- Polar Wind: Less than 3 eV
- Plasmasphere: Less than 3 eV
- Lobal Wind: 10 - 300 eV
- Warm Plasma Cloak: 10 eV - 3 keV
- Plasma Sheet: 0.5 eV - 5 keV
- Ring Current: 3 - 30 keV

Solar Wind
Io Plasma torus

- Total mass 2 Mton
- Source 1 ton/s
- Replaced in 20-50 days
• Strong electrodynamic interaction
• Mega-amp currents between Io and Jupiter

• Plasma interaction with Io's atmosphere
• Heated atmosphere escapes
• ~20% plasma source local
- The magnetic field couples the plasma to the spinning planet.
- Ion gains large gyromotion -> heat.
Cassini UVIS
Andrew Steffl

Spectral diagnosis of plasma conditions Ni, Ne, Te
Plasma Torus Mass Flux

260-1400 kg/s

- Half lost as fast neutrals -> extended neutral cloud
- Half transported out to plasma disk
Plasma Torus Energy Flux

2 terawatts

40-80% energy from pick up

60-20% energy from hot electrons

70-90% energy radiated in UV

ionization

S 12%
O 7%
S 15%
O 48%

charge exchange

pick-up 82%

52% i-e coupling

coulomb collisions

UV radiation 69%

transport 10%

transport <<1%
In rotating magnetosphere
If fluxtube A contains more mass than B – they interchange

Rayleigh-Taylor instability where centrifugal potential replaces gravity

If $\beta \ll 1$, interchange of A and B does not change field strength.
In rotating magnetosphere
If fluxtube A contains more mass than B – they interchange

You can think of centrifugally-driven fluxtube interchange as a kind of diffusion.
- How will density vary with distance from the source?
- How will diffusion rate depend on gradient of density?
If $\beta \ll 1$, interchange of A and B does not change field strength.

In rotating magnetosphere

If fluxtube A contains more mass than B – they interchange

\[10^{35} \quad \text{NL}^2 \quad 10^{36} \]

Inward SLOW

FAST outward

Radial Transport

Jupiter

R_J
Aurora
Hubble Space Telescope – Jon Nichols
Jupiter's 3 Types of Aurora

- Steady Main Auroral Oval
- Variable Polar Aurora
- Aurora associated with moons
Satellite auroral emissions

- Plasma-moon electrodynamic interaction
- Mega-amp current systems
- Analogous to Earth auroral processes

Papers by Su, Ergun, Lysak, Hess, Bonfond
Main Aurora

- Shape constant, fixed in magnetic co-ordinates
- Magnetic anomaly in north
- Steady intensity
- $\sim 1^\circ$ Narrow

Clarke et al., Grodent et al. HST
• As plasma from Io moves outwards its rotation decreases (conservation of angular momentum)

• Sub-corotating plasma pulls back the magnetic field

• Curl $\mathbf{B} \rightarrow$ radial current J_r

• $J_r \times \mathbf{B}$ force enforces rotation

Field-aligned currents couple magnetosphere to Jupiter’s rotation

Khurana 2001
Cowley & Bunce 2001
The aurora is the signature of Jupiter’s attempt to spin up its magnetosphere

Outward transport of Iogenic plasma

\(J \) transfers load to ionosphere

Transfer of angular momentum limited by ionospheric conductivity

20-30 R\(_J\)

Cowley et al. 2002

Empirical field + plasma model

Sub-corotating plasmasheet 20-60 R\(_J\)

Knight relation

\(E_\parallel \approx 100 \text{ kV} \)

Upward current \(\approx 1 \mu\text{A/cm}^2 \)

1° narrow auroral oval

Parallel electric fields: potential layers, \(\phi_\parallel \), “double layers”

Downward ???

Upward ~ OK
Where is the clutch slipping?

A - Between deep and upper atmosphere?
B - Between upper atmosphere and ionosphere?
C - Lack of current-carriers in magnetosphere -> $E_{||}$?
Ionosphere - Sets boundary conditions for magnetospheric dynamics
Scale, rotation-dominated, Io source
Main Aurora 20 R_J

R_{MP} 60-100 R_J

Magnetosheath
Magnetopause
Current Sheet
Magnetotail

Solar wind
1,500,000 km/hr

Bow shock

Io plasma torus
\[\nabla \times \mathbf{B}_{\text{observed}} \rightarrow \mathbf{J} \]

Configuration

Side View
- **Expands, stretches field**
- **Plasmasheet**
- **Azimuthal Current** j_ψ

Looking Down
- **Bends field back**
- **Radial Current** j_r

\[\nabla \cdot \mathbf{J} = 0 \rightarrow \mathbf{J}_\parallel \]
(De-)Coupling - 1

Magnetospheric Factors: \dot{M} ϕ_{\parallel}

Ionosphere/Thermosphere factors: \sum_p winds, chemistry, heating, radiation, etc;

Communication breaks down $\sim 25R_J$.
Magnetosphere & atmosphere stop talking $> 60R_J$
How does a blob of plasma here communicate with the planet?

How is a stress from the outside communicated to the planet?

How is information transmitted along magnetic field lines?

Alfven waves!
De-Coupling - 2

\[v_A = \frac{B}{\sqrt{\mu_0 \rho}} \]

Alfven Speed

10^4 km/s
3000 km/s
1000 km/s
300 km/s

Alfven 1-way travel time

Communication breaks down between the planet and magnetosphere

DUSK

90 mins
60 mins
40 mins
120 R_J
95 R_J
60 R_J

Z (R_J)
0 10 20 30 40 50 60
0 5 10 15 20

TIME (Minutes)
0 20 40 60 80 100

RADIAL DISTANCE (R_J)
0 20 40 60 80 100 120
De-Coupling - 3

![Graph showing Alfven Radius relationship with Vr ~ VA and V_Alfven](image)

At ~ 60 R_J

\[V_{\text{Alfven}} \]

\[V_r \sim V_A \]

\[M = \text{nominal} \]
Combining V_r and $V_{azimuthal}$ we get....
• Beyond $\sim 60 \, R_J$ material spirals away from Jupiter in 10s of hours

• Radial transport is still diffusive: Centrifugally-driven fluxtube interchange
Reconnection is reduced in the outer solar system:
- weaker solar fields
- shear boundaries
- strong change in β

Can small-scale boundary-layer processes act like viscosity?

Shear-driven Kelvin-Helmholtz instability

This is small-scale, intermittent reconnection – as compared to large-scale, quasi-steady reconnection per Dungey cycle
Mass & momentum transport – boundary layers

Upstream IMF

Upstream IMF wrapped around flattened magnetopause
Solar Wind Stresses Overcome Rotation

Add Maxwell stresses from solar wind interaction

Stresses from magnetic shear on boundary
Vasyliunas Cycle

Inward in morning

Outward in afternoon

Reconnection sending plasmoids down the tail
Observations of plasmoid events in *Galileo* data.
Solar wind interaction:

- More of a plasma-plasma interaction
- Less of an interaction between magnetic fields
Juno
Spacecraft & Payload

Orbit Insertion
4th July 2016

SPACECRAFT
Diameter: 66 feet
20 meters

Power
400 W

Spin period
30 sec

JunoCam
camera

UVS
UV spectrometer

Waves
Radio & plasma

JIRAM
IR spectrometer

Gravity Science

JADE
Low-energy particles

JEDI
High-energy particles

Magnetometer

MWR
Microwaves
Juno: Close Polar Orbit is Key

- **Orbit 1**
- **Orbit 16**
- **Orbit 31**

35 polar orbits

- **Duck under radiation belts...**
- **Skim above clouds...**

Perijove (4,200 km above clouds)

Trapped charged particles
Jupiter's Magnetic Field

- Juno's first few passes are showing deviations from previous simple models.
- Hints that the dynamo region is closer to the surface?

![Graphs showing deviations from simple models and hints of a closer dynamo region.](image-url)
In orbit since July 2016!

Polar Magnetosphere

Juno passes directly through auroral field lines

Measures particles precipitating into atmosphere creating aurora

Plasma/radio waves reveal processes responsible for particle acceleration

UV & IR images provides context for *in-situ* observations
Earth Auroral Current Region
Does same physics apply at Jupiter?
Juno UVS

Jupiter's aurora is structured & dynamic
Juno UVS

North

Color ratio -> depth of emission -> energy of precipitation electrons
Earth Based Observing Programs

- Hubble Space Telescope
 - Denis Grodent – Large observing program
- Hisaki UV – Torus, Aurora
- Radio Observations
- Chandra, XMM X-Rays
- Keck, IRTF H$_3^+$
Go Juno!

Thank you!
Uranus

- Highly asymmetric,
- Highly non-dipolar
- Complex transport (SW + rotation)
- Multiple plasma sources (ionosphere + solar wind + satellites)
Neptune

Similarly complex as Uranus

Zieger et al.
Mercury & Ganymede

Mercury - Magnetic field detected by Mariner 10 in 1974

Ganymede - Magnetic field detected by Galileo in 1996

$B_{\text{surface}} \sim 1/100 \text{ Earth}$
Ganymede

Plasma Flow

X (R_G)

Y (R_G)
Mars

Solar wind

Bow Shock

Magnetic Pile-up Boundary

Photo-electron/Wake Boundary

Ionosphere Escape

Escaping Atmosphere

Tail

Ion Outflow

Precipitating ions

Pick-up Ions
Summary

• Diverse planetary magnetic fields & magnetospheres
• Earth, Mercury, Ganymede magnetospheres driven by reconnection
• Jupiter & Saturn driven by rotation & internal sources of plasma
• Uranus & Neptune are complex – need to be explored!

Stay tuned…. MAVEN mission to Mars

Juno mission to Jupiter!
What's wrong with this picture?

