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High-Energy Release Coupled with Strong Radiation
Pressure Produces an Extended Neutral Tail

Maercury
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Mercury’s Reconnection-Driven Magnetosphere

Slavin et al. [2009]
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Cross-Magnetosphere Electric Potential
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Substorms at Mercury:
Extreme Loading — Unloading Events

14" February 2012
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Energetic Electrons in Cross-tail Current
Sheet Flux Ropes at Mercury

18 Feb, 2014  1836:15.00 to 1836:30.00
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Fermi Acceleration of Electrons in Coalescing Flux Ropes

t=14

formation,
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magnetic
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Drake et al. (2006; 2008)



Flux Rope Coalescence and Energetic Electron
Acceleration

Courtesy of J. Drake
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Highly Compressed Magnetosphere

N

A % e




Disappearing Dayside Magnetosphere (DDM) Events
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DDM Magnetosheath

DOY 288 (10/15) 2011

P., ~ 140 nPa
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Slavin et al. (2018)




DDM Magnetosheath
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P., ~ 180 nPa
Slavin et al. (2018)



DDM Magnetosheath

P., ~ 290 nPa

Slavin et al. (2018)
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Low Altitude DDM Bow Shock & Magnetopause
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Solar Wind Compression, Induction and
Reconnection at Mercury
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Summary

Proximity to the Sun matters - - Mercury’s magnetosheath tends to
be low beta and develops a thick plasma depletion layer, which
supports very fast symmetric reconnection. As a result reconnection
driven dynamics at Mercury depends more upon IMF intensity and
than southward IMF Bz (i.e. magnetic shear angle).

Dimensionless reconnection rate at Mercury’s magnetopause is ~ 3
to 10 times faster than at Earth) resulting in a “Dungey cycle” (i.e.
substorm time cycle) of only ~ 3 min duration.

Approximately once per Earth year MESSENGER observed
“Disappearing Dayside Magnetosphere Events” that expose the
forward hemisphere of Mercury’s surface to direct solar wind
impact. These DDMs appear due to CME associated extreme solar
wind dynamics pressure and intense southward magnetosheath B..
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Conservation Laws

In both fluid dynamics and MHD conservation equations for mass, energy and
momentum have the form:(aQ/ at) +V - F =0, where Q and F are the density
and flux of the conserved quantity.

Ifa discontinuity or shock 1s steady (0/0¢ = 0) and one-dimensional (OF,/on) =
1 or ( F — F -1 = (), where u and d refer to upstream and downstream and 7
is the uhit no¥mal to the discontinuity surface. We normally write this as a
jump condition [F,] = 0.

Conservation of Mass (d/0n)(pv,)=0or [pv,]=0

"on dn Jn 2&40 .
and third terms are the

gradients of the gas and magnetic pressures in the normal direction.

. d - .
Conservation of Momentum pv Yy Ip + . ("B )= 0 where the first term is

the rate of change of momentum and the seco

[pv;‘ +p+(Bz/2u0)] =0



» Conservation of momentum: v, 7,~(B,/1,)B,]=0
The subscript t refers to components that are
transverse to the shock (i.e. parallel to the
shock surface).

» Conservation of energy:

: .
- B
pvn(lvz_FLB +VnB——\7 B h =0
2 ')/—lp Mo lu()_

There we have used pp7= const. The first two
terms are the flux of kinetic energy (flow energy
and internal energy) while the last two terms
come from the electromagnetic energy flux



The jump conditions are a set of 6 equations. If we want to find the downstream
quantities, given the upstream quantities, then there are 6 unknowns (o, v,, v, p, B,, B)).

The solutions to these equations are not necessarily shocks. These are conservation laws
and a multitude of other discontinuities can also be described by these equations.

Types of Discontinuities in Ideal MHD

Contact Discontinuity v, = 0, Bn +0 Density jumps arbitrary, all
others continuous. No plasma
flow. Both sides flow together
at v,.

Tangential Discontinuity v. =0,B, =0 Complete separation. Plasma
pressure and field change
arbitrarily, but pressure balance

Rotational Discontinuity v 20, B #0 Large amplitude intermediate
‘ ‘ 1 | Vave, field and flow change
vV, — B n/ (,UO,O direction but not magnitude.




MHD Analysis Techniques

AOSS 5095
Gang Kai Poh



Outline

MHD Discontinuities

— Tangential
— Rotational

Minimum Variance Analysis
deHoffmann-Teller Frame Analysis

Grad-Shafranov Reconstruction



MHD Discontinuities

*  Rankine-Hugoniot Jump Conditions

PmiUn1 = Pm,2Un,2

= Bn,lgt,l o - Bn,zgt,z
Pm1Un1Ut1 — = Pm2Un2Ut2 —
Uo Ho
B¢, —Bj4 B¢, — B},
pmurzl,l +pt T = Pmurzl,z +py + T
un,1Et,1 — Bp1lUsy = un,ZEt,Z — B LU,
Bn,l = Bn,z

1 )4 Btz,l Bn,l = -
Epm(uﬁi + uf; i, + ﬁpum + M_oun’l N (Bt - Tes)
1 )4 Bt2,2 Bn,z — -

= ipm(urzl,Z + uf; Jup,, + )/Tlpun,z + ﬂ_oun’z S (Bt - Tie2)



Tangential Discontinuity

* Simplestcase: B, = B, =0

2 2

. Bta . Bto

* Pressure Balance: pq 4 = P, A
2o 2o

* Plasma pressure, tangential B and density are
discontinuous across discontinuity surface



Rotational Discontinuity

* Plasma pressure, tangential B and density are
continuous across discontinuity surface

* Pm1 = Pm2 F 0, Up1 = Up2 = Up and Bn,l —
Bn2 = By




Minimum Variance
A EWHE

An Overview



Minimum Variance Analysis

Computation of the normal direction of the discontinuity to determine
type of discontinuity

Other applications include flux rope analysis

Minimum Variance Analysis (MVA)
— Sonnerup and Cahill (1967)
— Analysis Methods for Multi-Spacecraft Data [Sonnerup and Scheible, 1998]

Assumptions:
1. Transitional layeris 1-D

2. Time independent ( % =0)
3. Minimum set of 3 vectors required



Minimum Variance Analysis

Method is used to determine the B-field in the normal direction 7i [Sonnerup and
Scheible, 1998]

n 1s defined as minimum variance direction (i.e. direction in which B-field varies
the least)

— Can be expressed in the following equation:
M
1 = = 2
ming? = min=- " |(B™ — (B)) -
m=1

— Solution can be written as a eigenvalue-eigenvector problem:

3
> Mpn, = n, ME, = (BB,) — (B,)B,)
v=1

— Results are 3 eigenvectors that forms an orthogonal basis and corresponding 3
eigenvalues

— The eigenvector that corresponds to smallest eigenvalue 1s defined as 7



Recipe for MVA

* Step 1: Construct the covariance matrix M, (See
previous slide)

* Step 2: Solve the eigen-problem by diagonalizing M,

— Express M, = PDP-/, where P is an invertible matrix and
D 1s the diagonal matrix

— Each columns of matrix P corresponds to each eigenvectors
that form the basis for the MVA coordinate system.

— Each diagonal term of D corresponds to the individual
eigenvalues

— Computation of eigen-values/vectors 1s non-trivial (even
for 3x3 matrix), hence numerical methods using preferred
programming language 1s recommended (e.g. Matlab, IDL
or Mathematica etc)



* Step 3: Transformation of magnetic field data in
xyz coordinate (or any other coordinate system)
into the MVA coordinate system using the
eigenvectors computed from Step 2.

— Example: We have a set of N numbers of data points
for Bx, By and Bz

— After performing MVA on the data set, we obtained 3
e1genvectors: X,min, Xint> Xmax that form the basis for
the MVA coordinate system.

— We can then find the vector in MVA coordinate by
doing dot product for each xyz magnetic field vector
on each eigenvector (1.e. coordinate transformation)

* E.g. B- Xmin = Bmin
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Common Flux rope Analysis Technique

Force-Free Flux Rope Model

— Burlaga [1988], Lepping et al., [1990] i o

. Axial Component
Assumptions: B, = ByJ,(aR) o
1.  Force free (JxXB = 0) _
. . Tangential Component
2.  Cylindrical geometry Br = BoHJ,(aR) 1

Force-free equation (VXB = aB) can be solve analytically in cylindrical
coordinate [Lundquist, 1950]

Model results is fitted to data to infer physical properties of flux rope

Limitations:

1.  Flux ropes are rarely force free due to internal/external plasma pressure
acting on the structure

2. Only 60% of the flux ropes agrees reasonably well with the force-free model
while the remaining 40% cannot be modeled Slavin et al., 2003b
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deHoffmann-Teller
Analysis

An Overview



deHoffmann-Teller (HT) Analysis

Convection electric field E = —7XB in the observer
frame of reference

HT frame is the frame of reference where E vanishes

To determine properties of the MHD structure, it is
important to determine the HT frame velocity

For simplicity, we will discuss the HT frame analysis for
1-D structures such as shocks and MHD discontinuities



deHoffmann-Teller Frame

Frozen-in condition requires presence of convection E-field (E = —¥XB) in
observer frame

Transforming into a frame where E ~ 0
— This frame is known as the deHoffmann-Teller (HT) Frame [deHoffmann and Teller, 1950]

— Non-iterative, least-square method first developed by Sonnerup et al [1987, 1990] to
determine the HT velocity vyt

Theory:

— Define the mean square of the electric field D (v) to be:
1 v 1 v
N2 2
D = E'DOI" = = (m) _ 17 )xBgm)
@ =g 2 E O =52 |6 =)<
L= 1=

— Vis the HT velocity that minimize D (v) (i.e. V;,D(v) = 0)
— Solution is given by:

— Equation above can be rearrange tRO%CTOQJ??{@v("))

Ve = Ko-l(K(i)v(i))



deHoffmann-Teller Frame

K is defined as the projection matrix onto
the plane perpendicular to B multiplied by
B(™2 and is given by the equation:

(i) p (@)

B,’B
(1) _ p(i)2 [
K,, = BY (&W B(‘m)z)

K, is then defined as:
K, = (KW)



deHoffmann-Teller (HT) Analysis

 Determine quality of HT frame

* Correlation comparison between:
— Convection (EP = —5@WxB®) E-field
— HT(ES) = —VyrxBD) E-field

* High correlation means well-determined HT frame and vice versa

* One of the reasons for poorly-determined HT frame could be due to
acceleration of the frame

 Hence, the acceleration term had to be accounted for before the HT
velocity could be used for further analysis






Walén Condition

* For a rotational discontinuity, accelerated
plasma flow is alfvénic in the HT frame

e Walén Relation

B
vVHoP

UIZU_VHT—i

* This relation has major application in
understanding magnetic reconnection



E+va=nJ+inB—iVP+ s 09
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Grad-Shafranov
Reconstruction

An Overview



Some Definitions

Reconstruction plane is the xy-plane

0

Invariant axis z means e =0

Transverse means the x, y components
Magnetic potential vector A in the 2
— B=VxA

— A(x,y) is the stream function for the field lines



Assumptions

Magnetic structure is approx. 2-D

. .0
Proper frame where the structure appears stationary i.e. T 0

— The deHoffmann-Teller frame

Convective inertia term neglected in the momentum equation

Transverse Pressure, Bz and thermal pressure are field line
invariants

— Only dependent on magnetic potential A



Grad-Shafranov Equation

* For a 2-D, coherent, magnetohydrostatic
structure

Vip = JXB

e After some math and ....



Become like this!!




Grad-Shafranov Equation
* You get the Grad-Shafranov Equation

0x* 0dy? — Houa 21U

2y 024 024 d( BZZ)
= | p




The Recipe

e Reconstruction process uses the GSE components of:
— B-field
— plasma velocity
— plasma density
— Temperature

e Step 1: Use minimum-variance analysis (MVA) to find
the normal vector 71 (Sonnerup and Scheible[1998])

e Step 2: Determine the HT frame velocity V7 and
construct the Walen plot to justify the neglecting of
inertia terms (Khrabrov and Sonnerup[1998])

Steps adapted from Hau and Sonnerup 1999
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The Recipe

 Step 3: Select the invariant axis Z and the
corresponding unit vector X and y

e Step 4: Projection of HT velocity V onto the Xy

plane to obtain Vyr;
— let the unit vector X to lie along —Vy;
=z

X X

<y N>
1
N>

e Step 5: Interpolation of data using a cubic spline



The Recipe

e Step 6: Obtain A(x 03 along the spacecraft trajectory by

integrating B,, P

tr
A(x,0) = —jBy dx A(x,0) = =V, f B, dt’
0

2

e Step 7: Function of P ,0) can be

prepared and dlfferentlated for use on the R.H.S of the
GS equation

* Flux ropes: Single-value function
* Magnetopause: Possibly double-value function



The Recipe

e Step 8: Treating it as a spatial initial problem, we can
then Taylor expand A(x, £Ay) into:

2
dA(x, 0)+(Ay)27A+---

A(x, £Ay) = A(x,0) + (Ay)

2
A(x, +Ay) = A(x,0) + (Ay)B,(x,0) + (Ay)? Z—;

dzA d?A d P;
— W|th — = - — — —
axz Mo

— A new value of B, can be computed by Taylor expanding
B,:
d?A(x,0)

Bx(x; iAy) — Dy y

4Py B 0) + (A
o = BE0 @)



e Step 9: Finite Difference Method to evaluate

d*A\  2A; —5Aiq + 4445 — 244,43
dx? : - (Ax)?

Central Difference

— Integration domain is rectangular, as compared to
rhombus shaped



Solving the GS equation as an initial value problem (Cauchy
Problem) leads to numerical instability

— Exponential growth
Need for a “suppressing” algorithm

— Do a running, 3-point, weighted averages

To extend the integration domain, a total pressure
adjustment method is introduced (Hu and Sonnerup 2003)



Why GS Reconstruction?

Common method to determine physical and magnetic properties of
flux ropes: Fitting of a Bessel Function solution to the force-free
equation

— Makes assumption of its structure such as axisymmetric
— GS Reconstruction doesn’t

Magnetic Structures of the magnetopause

— X-Type nulls
— Presence of magnetic islands

Besides the fact that it also creates 2.5/3 dimensional pretty plots!!!
— Magnetic transects



Magnetic Properties
Maximum axial field strength

Magnetic topology
Helicity
Plasma Properties such as axial current,

plasma pressure, number density and

temperature
Chirality
Presence of magnetic island and X-lines

Physical Properties
Velocity and direction in which the
structure is travelling (whether it 1s
accelerating, decelerating or constant
velocity)
Size/diameter
Axis orientation
Twist of field lines

Impact parameters
Expansion or contraction
Position of X-lines
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Other Results

* Time Evolution of magnetohydrostatic Grad-Shafranov
equilibria using single spacecraft data

— Basic idea is to advance the set of spatial data before and after
the actual spacecraft-data, then produce a series of field maps

— i.e. do the time integration first, then the spatial integration
— Hasegawa et al 2010

 Multi-Spacecraft

— Cluster
— Combined GSR field maps from all 4 spacecraft

— Sonnerup et al 2004



Compostne Map, 8 Mar, 2000 070722-070827 UT




Limitations

Cannot be used for vortices with rapid tempora!
variation

Numerical instabilities
The maximum integration domain
Availability of spacecraft plasma data

Extrapolation and interpolation of data
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