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Goal of this lecture

 Review a few basic plasma concepts in plasma
kinetic theory that underlie the lectures later
in the week.

 There are several excellent text books:
Nicholson (out of print), Goldston and
Rutherford, Boyd and Sanderson.

e The book | am most familiar with is by Gurnett
and Bhattacharjee, from which most of the
material is taken.



Plasma: levels of description

Plasma is an ensemble of charged particles, capable of

exhibiting collective interactions.

Levels of Description:

Single-particle dynamics in prescribed electric and
magnetic fields

Plasmas as fluids in 3D configuration space moving
under the influence of self-consistent electric and
magnetic fields

Plasmas as kinetic fluids in 6D u-space (that is,
configuration and velocity space), coupled to self-
consistent Maxwell’s equations.



Single-Particle Orbit Theory

Newton’s [aw of motion for charged particles

dv
mE:q(E+va)

Guiding-Center: A very useful concept
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Single-Particle Orbit Theory

ExB Drift

dv
mE:q(E+va)

Consider K =const., B=const.

The charged particles experience a drift velocity,
perpendicular to both E and B, and independent of

their charge and mass.

_ExB
B2

VE



A-D95-23841

rmj
F
E.D

ol
<
m
I
o
[

A-C95-239




Gradient B drift
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Curvature drift
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The Ring Current in Earth’s
Magnetosphere: An Example

Obligue View
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Kinetic Description of Plasmas

Distribution function  f(r,v,f)

Total number of N = || dxavf(r,v,1)
particles phase space

Example: Maxwell distribution function

2
f=n()eXp(—glI:T} n0=N/V




Boltzmann-Vlasov Equation

Motion of an incompressible phase fluid
in u—space (6D)

%+V.@g . 4 (E+va).@=0, s=e,l
2 a m N

In the presence of collisions
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Properties of the Vlasov Equation

1. The Vlasov equation conserves the total number of particles N of a species,
which can be proven, for the one-dimensional case, as follows:

= [ rasw=- [[v2 avav~ [[ a3l arav

2. Any function, g[ mv? + g®(x)], which can be written in terms of the total
energy of the partlcle, is a solution of the Vlasov equation.

3. The Vlasov equation has the property that the phase-space density f is constant
along the trajectory of a test particle that moves in the electromagnetic fields E
and B. Let [x(7), v(f)] be the trajectory that follows from the equation of motion
mv =¢g(E + v x B) and x = v, then

df(x(t), v(r),1) af af dx N af dv
dr o tox w Ty w

f af af q B
ar ax'v+E'E(E+VXB)_U




Properties of the Vlasov Equation

4. The Vlasov equation is invariant under time reversal, (f — —t), (v — —v). This
means that there is no change in entropy for a Vlasov system.
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Boltzmann’s H functional
—f flz,v)log f(z,v)dvdzx
Q. xR3

Boltzmann identifies S with the entropy of the gas
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and proves that S can only increase in time
(strictly unless the gas is in a hydrodynamical state)

— an instance of the Second Law of Thermodynamics



Boltzmann’s H-Theorem

dH<O dS>O
dt — dt —

If this is true, then f becomes Gaussian as t — oc!










Vlasov-Poisson equations: requirements
of self-consistency in an electrostatic
plasma

%'FV'%_&V@'%:O

Jt o mg v
E=-Vo

V-E=-V’®=4rp=473 q,[ dvf,

\)



Linear Plasma Waves

fe(x, v, 1) = feolv) + fer(x,v, 1)

() Me 1/2 Mov>
v)=—Hn exX —
Jeo O\ 2rka e Pl 2T,

fol = fer explitkx — wt)].

Linearizing the Vlasov equation, and using the wave representation, we obtain
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Linear Plasma Waves

Je(x, v, 1) = feo(v) + fer(x, v, 1)

(v) — Me 1/2 Mov>
Joo) =neo{ 5070 | SXP T
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el — |

The vanishing of the denominator (w — kv) causes a singularity in the perturbed
distribution function, which we will have to address carefully. The electrons with

v=w/k are called resonant particles.



Linear Dispersion Relation

@, OF 4o /0u
D(k, @) =1~ ¥, -[Lu—c?:um

then gives for the dispersion equation for weakly damped electrostatic waves
in a field-free plasma

1- Z mk: (1 + iw; E) ﬂs [aFﬂ(?ﬁT du

" ni[ﬂng(“}L“m r|k|] =0 (8.9




Distribution function and Landau
damping
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Non-Maxwellian Distributions
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Figure 5. Typical ion energy spectmum in Satun’s magnetosphere measured by the LECP instrument
om Vioyager 2 at 1085 (from (Ernmigis, 1982)).
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Landau Damping:
The Measurement

Important key observation...
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FIG. 3. Logarithm of damping length vs phase ve-
locity squared. The solid curve is theory of Landai
for a Maxwellian distribution with a temperature of
10.5 eV,



Quasilinear theory: application to scattering due
to wave-particle interactions

* Consider electrostatic Vlasov equation

Is oy Is _dyepDs_o
o AdH m v

Split every dependent variable into a mean and
a fluctuation

fs={fs)+fs1> (fs1)=0



Quasilinear Diffusion

It follows after some algebra that the mean or
average distribution function obeys a diffusion

equation:
\

J

2n=2 {021

Here D is a diffusion tensor, dependent on
wave fluctuations. These fluctuations can be a
proxy for collisions as far as the average
distribution function is concerned.



Fluid Models

A primary fluid model of focus in this summer
school is Magnetohydrodynamics (MHD)

It treats the plasma as a single fluid, without
distinguishing between electrons or protons,
moving under the influence of self-consistent
electric and magnetic fields.

It can be derived from kinetic theory by taking
moments (integrating over velocity space),
and making some drastic approximations.



Fluid equation of continuity



Fluid momentum equation
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