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(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

O 1
_f+v.vf+i(E+ —va) Vuf =0
ot m C

Vlasov equation

(1)

Quasilinear Theory




(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

df q 1 B
at—kv-Vf—i-m(E+cva)-va—O (1)

We want to use the Vlasov equation to figure out how the distribution
function evolves in the presence of plasma waves.

We could just solve (1) on a computer.

But aren’t there any organizing principles we could use to understand
wave-particle interactions? Is there a conceptual framework we could
use to reason out how the distribution function evolves over time in the

presence of plasma waves?

Let’s look for such a conceptual framework by solving (1) using a
perturbative technique.

Quasilinear Theory




(YakKimenko 1903 Kennel & Engelmann 1700 dux 199.2)

0 1
ajtc-i-'v Vf+7;<E+ 'va) Vof =0 (1)

fsz(m,’v,t)_i_fl(m,v,t) BzBO+Bl(w,t) EzEl(w,t)

Bo is a uniform background magnetic field.
fo is the background or equilibrium plasma distribution function

E+and B represent a collection of waves, which could be slowly
growing or slowly decaying. We're going to treat E1 and B+ as known.

f1 represents the response of the plasma to these waves

Our goal is to find how fy varies over times much longer than the wave
periods.

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)




df q 1 B
at—{-'v-Vf—{-m(E-{—c'va)-va—O (1)

fsz(mvt)+f1(xvt) B=BO+Bl(xt) E=El(mt)

Let's plug these expressions into (1), and then separately equate all the
“zeroth-order terms” and all the “first-order terms”.

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)
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f+v Vf—i——(E—i——'va) Vouf =0
ot m c

f :fO(m:'v:t) +f1(m:v:t) B = BO+Bl(mt) E :El(mat)

d fo
ot "

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)
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L v vi+ L (E+- va) Vof =0

m

f=folx,v,t) + fi(x,v,t)  B= By+ By(x,1t)

dfo
ot

+v-Vfo+

E = El(m: t)

(1)

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)
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TV V1+E\E+va5}-vvf=U (1)

fzfﬂ(mzvﬂt)+fl(w:v=t) B=BO+Bl(fB,t) EzEl(w,t)

fo-l—v Vfo+—(v><Bo) Vofo=0

ot mc

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

8f Vf+—(E+ va\ V.f=0 (1)




ot Toom\ ¢ ] o

fsz(mvt)+f1(wvt) B=BO+Bl(xt) EzEl(mt)

fo +v-Vfo+ — (v x Bg) - Vafo= 0 folx,v,t) = folv., v))

ot me

Here, we are using cylindrical coordinates (v, v|,#) in velocity space, where
the cylindrical axis is aligned with Bjy. Soon, we will set By — BpZ, and V)|
will become v..

(technically, fo varies in time over time scales much longer than the wave
periods. But here the variable t describes time variations over times
comparable to the wave periods, and fo doesn’t vary on this “fast” time scale.

Quasilinear Theory

(Yakimenko 1963:; Kennel & Engelmann 1966; Stix 1992)

of

{)f-|-'v Vf—l——(E-I— 'DXB) Vof =0 (1)
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f :fO(ma'v:t) +f1(m:v=t) B = BO+Bl(mt) E =E1($t)

9o +v-Vfo+ ——(vx Bo)-Vyfo=0- fo(m,v,t) = folv, v))

3 me

Now let's collect all the “first-order” terms in (1).

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

af 1 -
0t+v Vf+E<E+ va)-va—O (1)




f =f0(:1:,v,t) +f1(m=v:t) B = BO+Bl(mf) E :El(mat)

d
o0 Vfo+ L (0 x Bo) - Vifo =0 fo(w0,0) = folvs, )

df
ot "

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)
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fsz(m:vat)+fl(m=v=t) B=BO+Bl(m=t) E=E1(£B,t)

0,
Ofo +v-Vfo+ — (v x By) - Vy fo=0—= folz,v,t) = fo(ve,v))
t mc
0,
%-H’ Vi+

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

of 1
0f+'v Vf+E(E+vaB)-va—0 (1)




fzf()(m’vt)_*_fl(m’vt) B=B0+B1(.’L‘{') E=E1(33t)

0
0{‘0 +v-Vfo+ E (v x Byg) - Vyfo=0—= folz,v,t) = fo(vi,v))

Ifr

1
En +v- Vf1+—(’v><Bo) v-uf1=—% (E1+;UX31>'vao

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

or v Vi+ L (Bt oxB) V=0 (1)
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f:fO(a::vzt)J‘_fl(m:v:t) B = BO+Bl(wf) E:El(mt)

0
('9];0 +v-Vfo+ E (v x Bo) - Vy fo=0—= folz,v,t) = folvL,v))

dfr

1
+Tv- vfl'i‘—(”XBo) V-uf1=—l (El"'“UXBl) Vo
ot m c

Difficult-looking equation. How do we solve this equation for
f1(x,v,t) if we know E1, B1, Bo, and f?

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

1
0f+v Vf+—(E+ va)-V-Ufz() (1)
ot m

f = fale.v. )Y+ filxe. v 1) B = B.+ B.(x.t) E =FE.(x. )
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0
8f0 +v-Vfo+ ,,7 (v x Bo) - Vo fo=0—= folz,v,t) = fo(vL,v))

1
i—{—’v Vfl—l-—(’vXB()) V.vflz (E1+ 'UXBI)'vva

ot me m

Difficult-looking equation. How do we solve this equation for
f1(x,v,t) if we know Ej1, B1, Bo, and f,?

Method of characteristics!

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

1
gjt[+'v Vf+—L(E+;'v><B)-va=O (1)

f =f0(a:,'v,t) +f1(m:v:t) B = BO+Bl(mt) E =E1($t)




o0 Vfo+ L (0 x Bo) - Vifo =0 folwv,0) = folvs, )

B, 1
i—k Vf1+i(vaO)-V.Uf1=—i (E1+—’U><Bl) -V fo
ot me m c

Let fi(x,v,t) = fi(x(t),v(t),t), where dax/dt = v, dv/dt = (q/mc)(v x By):

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

J 1
a{-{—'v Vf+—L(E+;v><B)-V.Uf=O (1)

f :fO(m:'v:t) +f1(m:v:t) B = BO+Bl(xf) E :El(mt)




9Jo +v-Vfo+ (v x By) - Vafo=0— folx,v,t) = folvy, v))

ot me
0, 1
Oy Vh+ L (wxBy) V=L (E1 + =X Bl) Vofo
ot me m ¢
Let fi(ax,v,t) = fi(x(t),v(t),t), where da/dt = v, dv/dt = (q/mc)(v x By):
af;
dt

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

g{-i-'v Vf+_(E+1'l)XB>vL'f:0 (1)

n

f :fﬂ(mavat) +f1(a:,'v,t) B = BO+BI("B{) E :El(a:t)




OJ;O +v-Vfy+ 7,7 (v x By) - Vyfo=0—= folz,v,t) = fo(vL,v))

df
ot
Let fi(x,v,t) = fi(x(t),v(t),t), where da/dt = v, dv/dt = (q/mc)(v x By):

WL (B0 + ;o0 x Bie(0.0) -Vl @)

T

1
+v-Vf + — (” x By)-V,f1= —% (E1 + ;U X Bl) -V fo

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

f=folz,v,t) + fi(z,v,1) B = Bj + B(z,t) E=E(x,t)




% +v-Vfo+ E (v x Bo) - Vyfo=0—= folz,v,t) = folvi,v))

B, 1
i-I- Vfl‘i'_(’UXBo) Vofi=— (El‘l"'vXBl) -V fo
ot me m

Let fi(x,v,t) = fi(x(t),v(t),t), where da/dt = v, dv/dt = (q/mc)(v x By):

i _ (El(a:(f) )+ - - v(t) x Ba(z(), )) Vo fo (2)

dt m

Solve for x(t) and v(t); integrate (2) to find fi; plug f, into 3'¢ term in (1);
and average.

Single Particle Motion in a Uniform Magnetic Fleld

A000000006 .
VUV U UV 5

dx




dt

dv

— = —(vx B

dt  mec ( 0)

By = ByZ — v. = constant vl = 4/02 + v% = constant
. . qBo .
Helical motion. Cyclotron frequency 2 = —, gyroradius = p = v /Q.

me

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

g{‘*‘ Vf‘*‘—(E‘i'%’UXB)'V'Uf:O (1)

f :fO(m:'vat) +f1(m:v:t) B = BO+Bl(mt) E :El(mf)
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TU-VJjo+ — (VX DBg) VyuJo=VU— JolZ,V,T) = JolVL, V)
Ot me

dfr
ot
Let fi(x,v,t) = fi(x(t),v(t),t), where da/dt = v, dv/dt = (q/mc)(v x By):

%1 - (El(a:(t) t) + lv(f) x Bi(z(t), )) Vo fo (2)

m

1
+v- Vf1+—(’v><Bo) v-uf1=—% <E1+;”><Bl) -V fo

Solve for (t) and v(t); integrate (2) to find fi; plug fi into 3*¢ term in (1);
and average. Then, after considerable algebra, you find:

Quasilinear Theory

(Yakimenko 1963: Kennel & Encelmann 1966: Stix 1992)

(Henceforth, we follow convention in dropping
the 0 subscript on f and the 1 subscript on the Es)
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f N d3k ,
= lir — 20 Owr, — kyvy — n )Y, k1 |°G T,
ot vggon;oo m2 /(gﬁ)c?VUlC“ (Wi 1o — n8)|[nk|°G f,

first kind and degree n.)

Co

z.‘b'll,k — ﬁ I:Ek,reu'b']n,-*-l(o-) + Ek.le qu)' 71,—1(0-)] +tlEkz 0]71(0-) ag = k_]_fUJ_/Q
1

(Jn = Bessel function of ko O kv, O
Gz(l_ [ ||) L Fios

Wkr ) Qv wke O

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

ot m &

f = folv)+ fi(x,v,t) B = B, + B, E = E,

Solve for f; in terms of fy, Ey, Bi; plug f1 into 3*¢ term in (1); average:
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L Tq* 2
v VIE’I;OH_Z_:OO /(27r 3V,Ll(”'?,l()(c,u;” —k”t“ —n )|V k|G f,

kv kv
Gz(l_ ||l||) 9 kL 0

Wkr ) OVl wir O

1 .- .- v
wn,k - ﬁ [Ek,7‘e"¢’,]n+1(0‘) -+ Ek,l(i’_"(’b.]n—l(a)]+llEkz']n(o-) g = k_L’L-'_L/Q
1

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

of 1 _
E—*— Vf+;(E+ va)-V-Uf—O: (1)

fsz(v)+fl(m=v:t) B=BO+Bl E=E1

Solve for fi in terms of fy, E1, By; plug fi into 3'¢ term in (1); average:
g g




T.~"')n,.k IQG f:

7rq d3k ;
= li E U0 (wgyr — kv — nfd
vglclx; m? / 27 "VLJ_CI (s 1o = ns)

o= (1 _ ’fu’Un) 9 ks 0
Wkr ) OVl wir O

1

P v
% (B re® J, +1(a)+Ek,le—a«*},]n_l(a)]+%Ekz.1,,(a) oc=kiv /O

t.o'bn,k —

Wave-Particle Resonance Condition

2000000006 .
UV U VYU 2

o Consider 0F = 6Ey cos(k - T — wt)




Wave-Particle Resonance Condition

2000000006 .
HRRRRRERR -

o Consider 0E = 6Eq cos(k - T — wt)
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e Primed frame moves with particle guiding center

Wave-Particle Resonance Condition

2000000006
VUV VU UV

o Consider 0E = 6Ey cos(k - T — wt)

o LetT =1 +v||5t, where b = EO/BO

B




e Primed frame moves with particle guiding center

e Consider §E = §Ej cos[k - & — (w — kv )t], where k| = k-b

Wave-Particle Resonance Condition

2000000006 .
HRRRRRERR B

e Consider 0E = 6Eq cos(k - T — wt)

o Letr=21" +v||3t, where b = BO/BO




e Primed frame moves with particle guiding center
o Consider 0E = 6Ejcoslk - & — (w — kv )t], where k| = k-b

e w — kjv| = Doppler-shifted frequency in guiding center frame

Wave-Particle Resonance Condition

AS00000006 .
HRRERRREE 5

e Consider 6E = §Ejcos(k - T — wt)

o letz =1 +v||5t, where b = ﬁo/Bo




e Primed frame moves with particle guiding center
e Consider 6E = 5E0 COS[E T — (w - k”‘U“)t], where k” = I_{; l;
e w — kjv| = Doppler-shifted frequency in guiding center frame

e Wave-particle resonance when w — kv = nf2

Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

ot m C

f:fO(v)+f1(mav:t) B:BO+BI E:El

Solve for fi in terms of fy, E1, By; plug fi into 3'4 term in (1); average:
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1 p ; U
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Quasilinear Theory

(Yakimenko 1963:; Kennel & Engelmann 1966; Stix 1992)
Of 1
Fn +v- Vf+— E+-vxB)-V,f=0, (1)
1L C

f=f0('v)+f1(m,v,t) B:BO+BI E:El

Solve for fi in terms of fy, Ey, By; plug fi into 3'¢ term in (1); average:

7rq >k )
ot Vlggo Z (Qﬂ- '3V,L"-Lo(wk7‘ o kIIUII - nQ)l"s’bn,klg

n=—oo
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what kind of equation is this?

of _ L 0f

ot Ox?




Physically, what is the difference between a system described
by the top equation, and a system described by the bottom

equation?
of _ ot
ot Ox2

2
of _ 0t

ot 0?2




Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)
af 1
+ v - Vf+— E+-vxB)| -V,f=0, (1)
ot m ¢

f:f()(v)_*_fl(m:v:t) B:BO+BI E:El

Solve for fi in terms of fy, Ey, By; plug fi into 3'¢ term in (1); average:

df L = 7rq2 d>k ] |
o vk _z_: m?2 | (2r)3Vw ’ld(“kr"fu“u—nﬂ)lwn,kl ,
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Gz(l_ ||?v||) 9 kL 0
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Bm Wk a’b‘“

1 P P vV
Ek,re“’b']n+1(a) I Ek,le_up']n—l(o')] +lEkz ']n(U) g = k.l_v_l_/Q

d)n,k — \/_5 [ o1

(A

A\

..d/,\.'” 'L-‘"

(7 is a derivative along a curve of constant energy K’ in the “wave frame,”
which moves along By at velocity wy,/k, where

2
2 wkr
’l. .L’ —
1+ ( I k” ) ]

E.g., if f(vy,v)) = f(K'), then

_ knvn) of | kyvi of

Wkr / Qv wikr Ov)

K="
2

o) = (1




(A

A\

..d/k" .U"

(7 is a derivative along a curve of constant energy K’ in the “wave frame,”
which moves along By at velocity wy,/k|, where

2
02 o — okr
e (v" K ) ]

E.g., if f(vi,v)) = f(K'), then

G(f) = (1 N knvn) of | kjvi of

Whkr a'v_L Wkr 8'v||

r_
K—2
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(7 is a derivative along a curve of constant energy K’ in the “wave frame,”
which moves along By at velocity wy,/k|, where

2
02 oy kT
U_L+ (U” kl ) ]

E.g., if f(vi,v)) = f(K'), then

_WW)&f+MM8f
dvr  wkr Oy

r_ M
K-z

6 = (1
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(7 is a derivative along a curve of constant energy K’ in the “wave frame,”

which moves along By at velocity wy,/k|, where

K =2

E.g., if f(vi,v)) = f(K'), then
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(7 is a derivative along a curve of constant energy K’ in the “wave frame,”
which moves along By at velocity wy,/k|, where

2
2 Wker
vy + ('vu - T )
k)

E.g., if f(vi,v)) = f(K'), then

_ _k'u'vn) of kL of
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dvr  wkr Oy

K="21
2
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Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

ot m C

f:fO(v)+f1(m=v=t) B:BO+B1 E:El

Solve for fi in terms of fy, E,, By; plug f; into 3'¢ term in (1); average:

3




So, particles diffuse in velocity space, along curves of constant energy in
the wave frame! (But only if they satisfy resonance condition.)

Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

g+v-Vf+i(E+lva)-va=0= (1)
ot m C

fsz(v)+f1(m=v:t) B=BO+BI E=E1

Solve for f; in terms of fy, Eq, By; plug fi1 into 3¢ term in (1); average:
g g

of

— = lim i ﬁ/ d‘;k‘ G 5(&) T _nQ)l,d) |2Gf
ot Voo D= m2 (ZW)SVU_L THL kr 4] n.k :




Note that the diffusion coefficient here is related to |'¢,"')n,k|2 — i.e., the larger

the wave amplitudes, the faster the particles diffuse in velocity space.

Energy conservation in wave frame

Conisder a frame moving at 4 = &u/ k; with respect to the plasma

the wave frequency in this frame is w — kju =0

fluctuations are static: V x E = —l B_B = 0.

c Ot
— E=-V®
Energy gain = A€ = gA® — energy gain can not accumulate over time

Energy effectively conserved in this frame, but particle

direction can change (pitch-angle scattering).




Types of Resonant Wave-Particle Interactions

Wave-particle resonance condition:
wir — kv = nfd.

Landau damping (LD): n = 0,

—

particles pushed by FE.

Transit-time damping (TTD): n =0,
particles pushed by uVEB.

Cyclotron damping (CD): n # 0.

In the v — v, plane, resonant particles
diffuse along semi-circles centered on
v = wk,/k”, because V x E = 0 in the
wave frame. The condition £ = —V®
in the wave frame with ® bounded
means that there can be no secular
energy gain in the wave frame.

Hence, LD and TTD lead to parallel heating.

CD can lead to perpendicular heating,.

A

(o

&~

resonant
- _-particles




Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)
Of 1
T + v - Vf—l—— EFE+-vxB)| -V,f=0, (1)
e C

f = fo(v)+ fi(x,v,t) B = B, + B, E = E,

Solve for fi in terms of fy, E,, By; plug fi into 3'¢ term in (1); average:

resonance condition
7”1
= |i E G v
VgI})o /(27? 3V?,_|_ ‘

n=—oo

wvz,k |2G f:

energy conservation
in wave frame

1 i —i v
1/)71,16 - T = [Ek,re ¢Jn+1(0') - Ek,le ¢']1z—1(0)]+“lEkzc]7l(0) g = k‘_]_’b‘_L/Q




Quasilinear Theory

(Yakimenko 1963: Kennel & Engelmann 1966; Stix 1992)

0f+v Vf+—(E+1va>-V.Uf=0, (1)
ot m

f=fo(v) + fi(z, v,t) B = By + B E = E,

Solve for fi in terms of fy, E,, By; plug fi into 3'¢ term in (1); average:

9, :
—f= lim Z 7rq /(27r Vo, G vy O(wWkr — kv —nQ)|UnL|2Cf

Bt V=00
n=—oo

kv 0 ki 0 the importance
G=1(1- -+ of wave polarization

Wir

01‘_]_ WAT 0{0”
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Example 1: lon Cyclotron Heating by
Parallel-Propagating Alfvén/lon-Cylotron
Waves

(E.g.. Hollweg & Isenberg 2002)
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lon Cyclotron Heating

(E.g.. Hollweg & Isenberg 2002)
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e When 0 — 0, J,(¢) — 0 unless n = 0. (Jy(0) = 1.)
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lon Cyclotron Heating

(E.g.. Hollweg & Isenberg 2002)

1 ; » v
[Ek,'l‘euyb']n-i-l(o’) + E’\..le “,f‘l)' 71—1(0)]+ﬂE}‘zv}n(0‘) g = k_L’U_L/Q

d)n,k — %

e When o — 0, J,(¢) — 0 unless n = 0. (Jp(0) = 1.)

e Consider ions interacting with parallel-propagating (i.e., k; = 0) Alfvén/ion-
cyclotron waves with no parallel electric field (Ej. = 0).

e These waves are left circularly polarized, so Ej , =0




lon Cyclotron Heating

(E.g., Hollweg & Isenberg 2002)

1 i w v
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e When o — 0, J,(¢) — 0 unless n = 0. (Jp(0) = 1.)

e Consider ions interacting with parallel-propagating (i.e., k; = 0) Alfvén/ion-
cyclotron waves with no parallel electric field (Ej. = 0).

e These waves are left circularly polarized, so Ej , =0

e Of all the ¢, i, only one is non-zero — which one?




lon Cyclotron Heating

(E.g., Hollweg & Isenberg 2002)

1 : i, v
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e When o — 0, J,(c) — 0 unless n = 0. (Jp(0) = 1.)

e Consider ions interacting with parallel-propagating (i.e., k; = 0) Alfvén/ion-
cyclotron waves with no parallel electric field (Ex. = 0).

e These waves are left circularly polarized, so Ej , =0
e Of all the 9, j, only one is non-zero — which one?

e the only nonzero v, i is ¢ k.




Quasilinear Theory

(Yakimenko 1963: Kennel & Encelmann 1966: Stix 1992)

This means that for protons interacting with parallel-propagating
Alfvén/ion-cyclotron waves, out of this infinite sum, we need
only keep the n=1 term.

and for this term, the resonance condition is
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Alfvén/ion-cyclotron dispersion relation

e Alfvén/ion-cyclotron waves heat only counter-propagating protons!
o if w/ky >0, then v <0.

e Since w < {2, the particle must propagate in the opposite direction as the
wave, so that it sees a frequency that is Doppler-boosted up to (.

At low (3, cyclotron heating results primarily in perpendicular heating
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Alfvén/ion-cyclotron waves satisfy . ~ VA.
il
— resonant particles diffuse to larger v, and to slightly smaller |v|.

Example 2: Self-Induced Scattering of Strahl Electrons
Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)




« Why strahl electrons excite oblique whistlers, not parallel-
propagating whistlers.

* Analytic instability criterion for strahl-excited whistlers in a
low-beta plasma.

« Basic approach: use our qualitative understanding of
quasilinear theory to determine the conditions under which
whistler waves gain energy by interacting with an electron
beam (the strahl) without losing energy to the core of the
electron velocity distribution.

when particles lose energy by resonating with a wave, the wave gains
energy and has a positive growth rate. Conversely, if the particles gain
enerqy, the wave is damped.




U
w/k T .
Ustrahl

* When electrons resonate with a wave, they diffuse along arcs of
constant energy in a frame moving along Bo at speed w/k|,.

e [nstability requires

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

. . (Verscharen, Chandran, Jeong, Salem, Pulupa, &
(Note that Qe is negative) Bale, ApJ, submitted. (arXiv:1906.02832v1)

/00 | ) —Qe'*‘k“V" (n=-1 resonance line)




W 2L
/ 13¢el
1__ _ Qe+k vy (n=1resonance line)
Wy
>
kyv,/1Q
— 1 -t
e the resonace condition is wy — kv = nfle, or wy = nfde + kjv).

e Since the electrons driving the instability satisfy 0 < wg/k| < vstranl, the
instability is driven by the n = +1 resonance, not n = —1.

e (n =0 won’t work, because df /v < 0 for solar-wind electrons, so elec-
trons would gain energy from an n = 0 resonance, damping the wave.)

We consider whistlers at wavelengths much larger than the electron
gyroradius. This means that o << 1 below.
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Aso — 0, J,(o) — 0 unless n = 0.
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Since we're dominated by n = +1, only the left circularly polarized com-
ponent of E contributes to the interaction. The parallel-propagating whistler,
which is right circularly polarized, is not excited. We thus need oblique whistlers,
with nonzero k&, , which are elliptically polarized and have a left circularly po-
larized component.

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

What is the Minimum Unstable Strahl Speed?
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Figure 3. Dispersion relation and resonance conditions for the FM/W mode
with # = 60° in regime 2. The black line shows Equation (14). The blue and
green areas show Equations (16) and (17), respectively, and the red line shows
Equation (13) with Us = 3w.. We use w¢ = 0.2v5.. This situation represents
a marginally stable state for the FM/W instability.

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

When Are Obliqgue Whistler Unstable?

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

When they cause the strahl to lose energy, but are




not darﬁped by thermal electrons in the core.

W
N
(1,+3k v, — strahl resonance line for v = 3vi
Q| - . .
k\v.,— resonance line for core Landau damping
Q.1/2 -
IQel—klvth —— resonance line fOI'. core cyclotron
- >k damping
1Q.l/(2vy,) "
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e

(but this only works when beta is small, otherwise the dispersion relation
is in the Landau-damped region.)

Parenthetical comment: in case you're interested, at higher B, the whistlers are

Landau damped, and the instability threshold on the strahl speed increases.
Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)
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NHDS: now = 006n0
Equation (19): no. = 0.0dnae, & = 607
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Figure 4. Comparison of Equations (19) and (21) with numerical solutions
of the hot-plasma dispersion relation from our NHDS code. The omange and
blue lines show Equations (19) and (21), except that the Z-signs have been
replaced with equal-signs. We use ws = 2we and T, = Ty, For the numerical
solutions, we show isocontours of constant maximum growth v = 107 2|
with vy, /c= 107*. The analytical solutions use # = 60°, while the numer-
ical solutions are evaluated at the angle for which the lowest U5 leads 1o a
maximum growth rate of v = 1073|€2,|.

ns(1 —cosf)cosf |

0.1 - a 1000
NHDS

Equation (19) ------

F 1 100

0w,/ Nog
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Figure 6. Data distribution of the analyzed solar-wind interval in the nq, /ngg
vs. Us/vae plane. The color-coding shows the probability density in the
corresponding bin in arbitrary units. The black line shows the isocontour of
maximum growth rate v, = 107°|€2,| for the oblique FM/W instability from
our NHDS solutions. The red dashed line shows Equation (19) for 6 = 607,

and we = vae = we.

Other examples: deceleration of alpha-




particle beams by fast-magnetosonic
waves, cosmic-ray streaming instability,
limits on proton temperature anisotropy
from firehose, mirror, and cyclotron waves,

Outline

\/ l.  The Lost Art of Quasilinear Theory.




A. ion cyclotron heating

self-induced scattering of the electron
strahl by oblique whistler waves

C. (deceleration of alpha-particle beams,
limits on proton temperature anisotropy)

Dissipation of Solar-Wind Turbulence by
Non-Resonant Stochastic lon Heating

Coronal Heating and Solar-Wind Acceleration by Waves
(Parker 1965, Coleman 1968, Velli et al 1989, Zhou & Matthaeus 1989, Cranmer et al 2007)
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) wave-particle
wave coupling

interactions
& turbulence

* The Sun launches Alfven waves, which transport energy outwards

field lmes

» The waves become turbulent, which causes wave energy to ‘cascade’
from long wavelengths to short wavelengths

» Short-wavelength waves dissipate, heating the plasma. This increases
the thermal pressure, which, along with the wave pressure, accelerates
the solar wind.

Key Problem: Can Turbulence Explain the
Perpendicular lon Heating Observed in the Corona?




T, (K)
2
|

f P
ol *H

These are perpendicular temperatures inferred from line widths
observed at the Sun’s limb.

Protons in the corona and low-[3 fast-solar-wind streams satisfy T, > T

Stochastic Heating by Strong Alfvén-Wave (AW) and
Kinetic-Alfvén-wave (KAW) Turbulence

k| I
CIlCI‘gy casc ‘ddCS

primarilv to lareer k|
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energy input

Because the AW trequency is w = kjjva, the small-scale
AWs produced by the cascade have low frequencies

Does the dissipation of low-frequency, strong AW/KAW
turbulence cause “perpendicular” ion heating, and if so, how?

Magnetic Moment Conservation

e [fanion’s orbitis nearly periodic in the plane perpendicular
to B, and if the frequencies of the fluctuating electric and
magnetic fields are much smaller than the ion’s cyclotron
frequency, then the ion’s magnetic moment u is almost




exa'ctly conserved (Kruskal 1v962), where

2
mv,

M= "p

Possible route to perpendicular heating from low-frequency
AW turbulence: if the gyro-scale fluctuations are large
enough, then an ion’s orbit becomes “stochastic,” and u is

not conserved. (McChesney, Stern, & Bellan 1987; Johnson & Cheng
2001; Chen, Lin, & White 2001; Chaston et al 2003; Voitenko & Goosens 2004)

Criterion for Stochasticity in Low-[3 Plasmas

Let dvp and OB, be the rms amplitudes of the velocity and
magnetic field fluctuations at k. pi = 1.

Stochasticity Criterion (McChesney, Stern, & Bellan 1987; Chaston et al




2004; Chandran et al 2010):
E=0Vp/vL~0(1)
Implies that the fractional change in anion’s K.E. during a
single gyro-orbit is of order unity.
5& va  0v, 0B,

For protons, = : ~ g71/2. =2
v v UA By

To achieve the heating rate in the corona, does dv, / v, need

A A A A 0re s AL

What Physical Process Energizes the lons?

2
H = q<I>+L(p—gA)

2m

mv2

H = q<I>—|—T




e When a particle “rolls over” a rising “potential-energy hill,” the hill
Is shorter when the particle rolls up and higher when the particle
rolls down, so the particle gains kinetic energy.

Stochastic Heating by AWs, KAWSs, or Strong RMHD/
KAW Turbulence

(Chandran, Li, Rogers, Quataert, & Germaschewski, ApJ, 720, 503, 2010.

Much earlier related work by, e.g., McChesney et al 1987, Karimabadi et al 1994, Chen et al
2001, Johnson & Cheng 2001, Chaston et al 2004, Fiksel et al 2009)

Particles diffuse in both space and energy. Derivation based




on phenomenological arguments at‘B S 1\ leads to:

QL= 61(5;)”)3 exp (— %2)

Here p is the ion gyroradius, 0v, is the rms velocity at scale p,
and € = 0vp/v.. The dimensionless constants ¢1 and c2 depend

on whether the fluctuations are waves or turbulence and on
the degree of intermittency.

Numerical Simulations of Test-Particle Protons Interacting with
Either KAWS or Strong RMHD Turbulence.
(RMHD turbulence: Xia, Perez, Chandran, & Quataert 2013)
(KAWSs: Chandran, Li, Rogers, Quataert, & Germaschewski, ApJ, 720, 503, 2010)

0.0001 —r—rrry
A 10242x256
105  --- ¢, = 0.21




P i
> 10 E
Q. = =
= 3
\ B N
K 1077 E
) - ]
107 E
10—9 1 1 11 lllll 1 1 | I . .
0.01 0.1 1

6v, /v,

Important Point: Stochastic Heating is
Inherently Self-Limiting at Low Beta

(Chandran 2010)
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e As T.increases,

€= 6V9/V_L decreases,
and Q_L decreases

as a result.

T, (K)

106 |

i (K)

lon Temperature Profiles from Stochastic Heating
(Chandran 2010)
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Observational Test of Stochastic Proton Heating at 0.3 AU to 0.64 AU
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(Bourouaine & Chandran 2013)

T

o« p-1.18

llllllllllllllllllll

- fo24

P(f) (nT? Hz"!)

lllllll

025 03 035 04

0.45

06 _ A RARAN RRRRS RARAE N _
0.4; { { ..................... {
b b4 &

: A=10"€P ® =c, d
L T R T P

N9 N9 NA nNe Nne nNn=




f (Hz) r (AU)

cq (dv,)? c
) Q_l_stoch= 1( p) exp __2)
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Left panel: we evaluate an “empirical” perpendicular heating rate from the measured
values of U and T.(r) in Helios data for the fast solar wind (Marsch et al 1983).

We use Helios data to measure 8B, (middle panel), set dvp = ovadBy/Bo , and use this
value of dvp to determine the stochastic heating rate, with 0=1.19.

We then find the values of ¢4 and ¢, for which Q  empirical = QL stoch (right panel). Lower error
bar corresponds to 0=1, and upper error bar corresponds to 0=1.38.

Conclusion




e Quasilinear theory is a powerful tool for understanding resonant wave-
particle interactions and involves three organizing principles:
1. resonance condition: w — kjv) = nf2
2. particle energy is conserved in the wave frame
3. right (left) circularly polarized waves at k| p < 1 interact only through

the n = —1 (n = 1) resonance.

e At a conceptual level, quasilinear theory can be used to deduce important
properties of wave-particle interactions, including the following:

— parallel-propagating Alfvén/ion-cyclotron waves interact only with
counter-propagating protons and at low 8 cause primarily perpen-




dicular ion heating

— the electron strahl excites primarily oblique whistler waves, which at
low 3 become unstable when Vigyan 2 v e

e Strong Alfvén-wave/kinetic-Alfvén-wave turbulence causes perpendicular
ion heating through a non-resonant process called stochastic ion heating.

e Simulations are a valuable tool, but even if you are a computational expert,
study theory carefully, because it provides crucial insights into numerical
and experimental data.




