Advances in the Ensemble Kalman
Filter for Historical Reanalysis
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How to get even more from almost
nothing!

Jeff Whitaker and Gil Compo



Data Assimilation for Reanalysis
(as opposed to NWP)

* Need to get the most out of very sparse data
(100’s or 1000’s of obs versus millions).

— Need flow-dependent background error
covariance model.

* Need an estimate of time-varying analysis
uncertainty (to estimate error bars).
— Analysis-error variance for each variable.

* Willing to sacrifice some accuracy for the sake
of homogeneity.



Comparison of 3DVar, 4DVar, EnKF
(Whitaker, Compo and Thepaut, 2009, MWR, p. 1991)

(B) Thinned Surface Pressure Network

 Surface pressure only
(2005412-200502), network
thinned to look like 1930’s

e Expts with ECWMEF IFS (3D
& 4DVar with retuned B) and

NCEP GFS with EnKF.
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* 4DVar appears
slightly better than
EnKF, esp. for 850 T.

* When same model is
used in the EnKF,
these differences
disappear (recent
work with M.
Hamrud and M.
Bonavita at ECMWF)
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Time-varying analysis uncertainty

(A) Sea-Level Pressure (B) 500 hPa Geopotential Height
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Time-varying analysis uncertainty

Ensemble mean (black) global mean dry
surface pressure. Ensemble range shaded blue.

Global Mean Dry Surface Pressure
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EnKF developments

New multiplicative covariance inflation
algorithm.

Non-gaussian observation errors (account for
gross observation errors).

Ability to assimilate all types of obs (including
satellite). Investigating ship winds...

Fixed-lag smoother (Khare et al, 2008, Tellus,
p. 97).



New multiplicative inflation
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Motivation:

e sampling error largest where G, /0, is large (Sacher and
Bartello 2008 MWR).

e model error is a larger fraction of background error in regions
of dense/accurate obs (where 0,/0, is large, Daley and Menard 1993
MWR).

e adaptively estimated inflation (Anderson 2009) looks like G,/0,
Pros:

* no inflation where there are no increments.

e more inflation where there are dense/accurate obs.
Cons:

e potentially large spatial gradients in inflation may disrupt
growing structures.



New multiplicative inflation

ps inflation 2008010500
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» 20CRv2 had too little inflation (too little spread) in data dense
regions, too much in data sparse regions.



Dealing with non-gaussian ob errors

Reject erroneous obs, but use good obs that are far from
the background.

Analagous to ‘VarQC’ in variational systems (Huber norm
ob error PDF — gaussian with exponential tails).

Alternative to ‘buddy-check’ used in 20CRv?2.

Algorithm:

— Iteration solution in observation space.

— Ob error modified at each iteration to account for heavy tails

(variance multiplied by inverse probability that observation does
not have a gross error — prob. of gross error is linearly
proportional to distance from background).

— |If other obs support an outlier, probability of gross error will be
decreased within the iteration.



Test of new QC - ‘Lothar’ storm Dec. 1999

probability of gross error
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Should we try to assimilate ship winds?
Test for Jan/Feb 2005

obs in NNR for 2005010100

surface pressure obs ship/buoy wind obs
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Should we try to assimilate ship winds?
Test for Jan/Feb 2005
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Should we try to assimilate ship winds?
Test for Jan/Feb 2005

850 vector wind error (vs ERA-Interim) NH
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Would more smoothing help?

Khare et al, 2008, Tellus, p. 97 present a fixed-
ag smoother algorithm.

terative process, starting with filter solution.
Lag-k smoother uses obs k times past analysis
time.




Would more smoothing help?
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Effectiveness depends on:
— Observation accuracy.
— Sparseness of network.

— Ensemble size (sampling error increases
with lag).

— 10% improvement for N=20, 20% for
N=50 in a perfect model.



Summary

Observation QC and bias correction are very
important.

Model error treatment (systematic and
random components) critical.

— How to distinguish model from observation bias?

Surface marine wind obs should help in
tropics, but may be redundant in mid-lats.

Fixed-lag smoothers should be investigated.



Comparison of 3DVar, 4DVar, EnKF

 4DVar and EnKF
both capture
details of
synoptic weathe
3DVar does not.




Error (hPa)

Time-varying analysis uncertainty

Predicted versus actual RMS difference
between ensemble mean first guess and obs.

(a) Northern Hemisphere
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