

Update on Precipitation Frequency Estimates and Questions of Stationarity

Geoff Bonnin

301-713-0640 x103 Geoffrey.Bonnin@noaa.gov

Office of Hydrologic Development NOAA National Weather Service

8th Annual Climate Prediction Applications Science Workshop, March 2-4, 2010, San Diego, California

Updates to NOAA Atlas 14

Performed by: NWS Office of Hydrologic Development Hydrometeorological Design Studies Center **Semantics of Precipitation Frequency New Analysis of Exceedances** With assistance from: **Michael Yekta** Sanja Perica Kazungu Maitaria

California Project Status

Data collection, formatting, initial QC; Complete
 Station numbers:

- 1,681 stations; 1-day through 60-day
- 667 stations; 1-hour through 12-hour
- 350 stations; 15-minute and 30-minute
- Included snow depth data for stations > 3000 feet
- Added semiarid CA to recheck Vol 1
- **Initial regionalization; Complete**
 - Spatial interpolation; Begin in mid-March Analysis of means by OSU PRISM Group

California Project Schedule

Complete regionalization and statistics
 Expected end of March

- Peer review
 - Expected to begin in April 2010
 - Web publication - Expected in September 2010

Alaska Project

- Data collection (U of Alaska, Fairbanks (UAF))
 - Complete pending three minor data sources
 - 15 data sources collected
 - 819 daily stations
 - 684 hourly stations
 - 38 15-minute stations

Data formatting (UAF); In Progress 11 data sources completed Resolving issues in 4 data sources

DORR DO ATMOSPIER

Under-catch bias correction (UAF)
Requires information on stations with Alter shields
Researching alternative approach if accurate information is unavailable
Data quality control (UAF)
NWS will extract AMS and provide QC tools
Data Collection, QC & Bias Correction Behind schedule by 3-4 months

Web publication due September 2011

Southeastern States Project

Data collection; Complete

 Identified 39 potential data sources
 23 data sources may not be used:
 Stations have less than 10 years of data
 Duplicated data from another source

 Data formatting; In Progress

 Completed 8 data sources

Data QC; In Progress Examined co-located NCDC stations for Consistency & duplicate records

Web publication expected May 2012

Midwestern States Project

Data collection; Complete
 Identified 49 potential datasets

- 11 data sources may not be used:
 - stations have less than 10 years of data
 - duplicated data from another data source
- Data formatting; In progress
 Completed 17 data sources
- Data QC
 - Examined co-located NCDC stations for
 - Consistency & duplicate records

Web publication expected May 2012

Climatology Semantics

 "It is likely that the frequency of heavy precipitation events ... has increased over most areas."

– IPCC AR4, Climate Change 2007: Synthesis Report

 "Groisman et al. (2005) found significant increases in the frequency of heavy and very heavy (between the 95th and 99.7th percentile of daily precipitation events)" IPCC AR4 Working Group I

These and similar statements in the literature define terms such as *"heavy", "very heavy", or "extreme" precipitation Sometimes differently!*

For Example

Groisman et al 2005

- "... we define a daily precipitation event as heavy when it falls into the upper 10% and/or 5% of all precipitation events;
 - as very heavy when it falls into the upper 1% and/or 0.3% of precipitation events;
 - and extreme when it falls into the upper 0.1% of all precipitation events."
 - "The return period for such events ... varies, for example, from 3 to 5 yr for ... very heavy precipitation events."

Generally consider just daily durations

Civil Engineering Semantics

- Use precipitation frequency estimates

 average annual exceedance probabilities (AEP) or
 - average recurrence intervals (ARI)
- Heavy, very heavy, and extreme rainfall:
 generally subjective terms
 but their meaning can be construed
 - Use many durations; not just daily NOAA Atlas 14 provides 5 min through 60 days

Example Civil Eng Design Criteria

Type of structure	Return period (years	
Highway culverts		
Low traffic	5-10	
Intermediate traffic	10-25	
High traffic	50-100	
Highway bridges	· · · • • •	

Source: Mays, Water Resources Handbook, McGraw-Hill, 1996.

Type of structure	Return period (years)	ELV
Highway culverts		
Low traffic	5-10	-
Intermediate traffic	10-25	
High traffic	50-100	_
Highway bridges		
Secondary system	1050	_
Primary system	50-100	_
Farm drainage		
Culverts	5-50	_
Ditches	5-50	_
Urban drainage		
Storm sewers in small cities	2-25	~
Storm sewers in large cities	25-50	_
Airfields		
Low traffic	5-10	_
Intermediate traffic	10-25	
High traffic	50-100	_
Levees		
On farms	2–50	_
Around cities	50-200	
Dams with no likelihood of		
loss of life (low hazard)		
Small dams	50-100	_
Intermediate dams	100 +	_
Large dams		50-100%
Dams with probable loss of life		
(significant hazard)		
Small dams	100 +	50%
Intermediate dams	_	50-100%
Large dams	-	100%
Dams with high likelihood of considerable		
loss of life (high hazard)		
Small dams	-	50-100%
Intermediate dams	_	100%
Large dams	-	100%

Let's Count Exceedances

- Thresholds
 - Use actual NOAA Atlas 14 thresholds
 - Not a fixed value or a percentile of a time series

- For:

- 1 year 1,000 year ARI
- Durations: 6 hours 45 days
- Use Partial Duration Series
 Complies with ARI definition
- **Count Number of Exceedances** For each station

• Sum for each year over the all stations in the domain Normalize for varying number of stations each year

Linear regression for all ARI/durations Show slopes as % of expected mean

Example Trends

Semiarid Southwest 1-Day Exceedances 2.5 -1 year 2 - 2 year Exceedences per Station per year -10 year 25 year 50 year 100 year 200 year 500 year 1000 year 0.5 L.V.KAN AN A AN YAX XX X 0 1896 1901 1906 1911 1916 1921 1926 1931 1936 1941 1946 1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 2006

Ohio Basin 6-Hour Exceedances

.05 level, T-test & Mann Kendall

Trends and Significance Average % Change in Exceedances per Station per Century, Ohio Basin 1.00% 0.80% 0.60% 0.40% -6-hour 0.20% 1-day 2-day 0.00% ★ 4-day 1-year 2-year 5-year 10-year 25-year 50-year 100-year 7-day 20-dav -0.20% 45-day -0.40% -0.60% 0.80% -1.00%

Generally not statistically significant except for daily durations above 2 yr ARI .05 level, T-test & Mann Kendall

TWP 11/8/2004

Conclusions

 Climate community statements on trends in rainfall intensity

- Do not address frequencies and durations required for civil infrastructure
- Climate community statements are being misinterpreted
- Historical trends in number of events
 - Are small compared to uncertainty of IFD values
 - Need better guidance on potential impact of climate change on IFD curves

In range relevant to civil infrastructure

