Update on Precipitation Frequency Estimates and Questions of Stationarity

Geoff Bonnin

301-713-0640 x103 Geoffrey.Bonnin@noaa.gov

Office of Hydrologic Development

NOAA National Weather Service

8th Annual Climate Prediction Applications Science Workshop, March 2-4, 2010, San Diego, California
Topics

• Updates to NOAA Atlas 14
 - *Performed by:*
 NWS
 Office of Hydrologic Development
 Hydrometeorological Design Studies Center

• Semantics of Precipitation Frequency

• New Analysis of Exceedances
 - *With assistance from:*
 • Michael Yekta
 • Sanja Perica
 • Kazungu Maitaria
California Project Status

- **Data collection, formatting, initial QC; Complete**
 - *Station numbers:*
 - 1,681 stations; 1-day through 60-day
 - 667 stations; 1-hour through 12-hour
 - 350 stations; 15-minute and 30-minute
 - *Included snow depth data for stations > 3000 feet*
 - *Added semiarid CA to recheck Vol 1*

- **Initial regionalization; Complete**

- **Spatial interpolation; Begin in mid-March**
 - *Analysis of means by OSU PRISM Group*
California Project Schedule

- Complete regionalization and statistics
 - *Expected end of March*

- Peer review
 - *Expected to begin in April 2010*

- Web publication
 - *Expected in September 2010*
Alaska Project

- Data collection (U of Alaska, Fairbanks (UAF))
 - Complete pending three minor data sources
 - 15 data sources collected
 - 819 daily stations
 - 684 hourly stations
 - 38 15-minute stations

- Data formatting (UAF); In Progress
 - 11 data sources completed
 - Resolving issues in 4 data sources
• Under-catch bias correction (UAF)
 - Requires information on stations with Alter shields
 - Researching alternative approach if accurate information is unavailable

• Data quality control (UAF)
 - NWS will extract AMS and provide QC tools

• Data Collection, QC & Bias Correction
 - Behind schedule by 3-4 months

• Web publication due September 2011
Southeastern States Project

- **Data collection; Complete**
 - *Identified 39 potential data sources*
 - 23 data sources may not be used:
 - *Stations have less than 10 years of data*
 - *Duplicated data from another source*

- **Data formatting; In Progress**
 - *Completed 8 data sources*

- **Data QC; In Progress**
 - *Examined co-located NCDC stations for*
 - Consistency & duplicate records

- **Web publication expected May 2012**
Midwestern States Project

• Data collection; Complete
 – *Identified 49 potential datasets*
 • 11 data sources may not be used:
 – *stations have less than 10 years of data*
 – *duplicated data from another data source*

• Data formatting; In progress
 – *Completed 17 data sources*

• Data QC
 – *Examined co-located NCDC stations for*
 • Consistency & duplicate records

• Web publication expected May 2012
Climatology Semantics

• “It is likely that the frequency of heavy precipitation events ... has increased over most areas.”

• “Groisman et al. (2005) found significant increases in the frequency of heavy and very heavy (between the 95th and 99.7th percentile of daily precipitation events)”
 – IPCC AR4 Working Group I

• These and similar statements in the literature define terms such as
 – “heavy”, “very heavy”, or “extreme” precipitation
 – Sometimes differently!
• Groisman et al 2005
 – “… we define a daily precipitation event as heavy when it falls into the upper 10% and/or 5% of all precipitation events; as very heavy when it falls into the upper 1% and/or 0.3% of precipitation events; and extreme when it falls into the upper 0.1% of all precipitation events.”
 – “The return period for such events … varies, for example, from 3 to 5 yr for … very heavy precipitation events.”

• Generally consider just daily durations
• Use precipitation frequency estimates
 – average annual exceedance probabilities (AEP)
 or
 – average recurrence intervals (ARI)

• Heavy, very heavy, and extreme rainfall:
 – generally subjective terms
 – but their meaning can be construed

• Use many durations; not just daily
 – NOAA Atlas 14 provides 5 min through 60 days
Example Civil Eng Design Criteria

Type of structure	**Return period (years)**	**ELV**
Highway culverts | | |
- Low traffic | 5–10 | | |
- Intermediate traffic | 10–25 | | |
- High traffic | 50–100 | | |
Highway bridges | | |
- Secondary system | 10–50 | | |
- Primary system | 50–100 | | |
Farm drainage | | |
- Culverts | 5–50 | | |
- Ditches | 5–50 | | |
Urban drainage | | |
- Storm sewers in small cities | 2–25 | | |
- Storm sewers in large cities | 25–50 | | |
Airfields | | |
- Low traffic | 5–10 | | |
- Intermediate traffic | 10–25 | | |
- High traffic | 50–100 | | |
Levees | | |
- On farms | 2–50 | | |
- Around cities | 50–200 | | |
Dams with no likelihood of loss of life (low hazard) | | |
- Small dams | 50–100 | | |
- Intermediate dams | 100 + | | |
- Large dams | – | 50–100% |
Dams with probable loss of life (significant hazard) | | |
- Small dams | 100 + | 50% |
- Intermediate dams | – | 50–100% |
- Large dams | – | 100% |
Dams with high likelihood of considerable loss of life (high hazard) | | |
- Small dams | – | 50–100% |
- Intermediate dams | – | 100% |
- Large dams | – | 100% |

Let’s Count Exceedances

- **Thresholds**
 - *Use actual NOAA Atlas 14 thresholds*
 - Not a fixed value or a percentile of a time series
 - *For:*
 - 1 year – 1,000 year ARI
 - Durations: 6 hours – 45 days

- **Use Partial Duration Series**
 - *Complies with ARI definition*

- **Count Number of Exceedances**
 - *For each station*
 - Sum for each year over the all stations in the domain
 - Normalize for varying number of stations each year

- **Linear regression for all ARI/durations**
- **Show slopes as % of expected mean**
Example Trends

Semiarid Southwest 1-Day Exceedances

Semiarid Southwest 6-Hour Exceedances

Ohio Basin 1-Day Exceedances

Ohio Basin 6-Hour Exceedances
Trends and Significance

Generally statistically significant except for 6 hour durations

.05 level, T-test & Mann Kendall
Trends and Significance

- Generally not statistically significant except for daily durations above 2 yr ARI
 - .05 level, T-test & Mann Kendall
Compare with NOAA Atlas 14
Confidence Intervals

• NOAA Atlas 14, 90% confidence intervals
 – +/- 30%
 • sparsely instrumented, shorter record; to
 – +/- 10%
 • more densely instrumented, longer record
Trend in mean

- Green +: Upward trend
- Blue dot: No trend
- Red line: Downward trend
Conclusions

- Climate community statements on trends in rainfall intensity
 - *Do not address frequencies and durations required for civil infrastructure*

- Climate community statements are being misinterpreted

- Historical trends in number of events
 - *Are small compared to uncertainty of IFD values*

- Need better guidance on potential impact of climate change on IFD curves
 - *In range relevant to civil infrastructure*