

Using reanalysis to identify drivers of rainfall variability in Queensland, Australia

Nicholas Klingaman

National Centre for Atmospheric Science and Walker Institute for Climate System Research University of Reading

With thanks to: Steve Woolnough, Jozef Syktus, Helen Fairweather, Ian Smith

3rd ACRE Workshop Friday 5 November 2010

- A three-year project to ...
 - Investigate the key drivers of rainfall variability in Queensland
 - To assess the ability of high-resolution global climate models to simulate the observed variability and its drivers.
 - To reduce the uncertainties in predictions of changes in Queensland's rainfall with global climate change.

Rainfall variability

Empirical Orthogonal Teleconnections

- EOTs identify patterns of rainfall variability that are linearly independent in time.
- The "central point" of the first EOT explains the most variance in the Queensland-mean rainfall.
- Prior to computing the second EOT, the first EOT is removed at all points via linear regression. EOT1 for SILO 0.25, using seasonal means for dec-feb 1900-2007
- EOTs computed for each three-month season, using 25 km interpolated gauge observations for 1900-2007.

Leading EOT of December-February total rainfall for 1900-2007

-0.54 -0.42 -0.30 -0.18 -0.06 0.06 0.18 0.30 0.42 0.54 0.66 0.78 0.90

1900 1910 1920 1930 1940 1950 1960 1970 1980

Year at beginning of December-February period

Atmospheric Science Natural environment research counc

National Centre for

1990 2000

EOT1 for SILO 0.25, using seasonal means for dec-feb 1900-2007 NINO4 correlations with EOT1 for SILO 0.25, using ann-means for dec-feb 1900-2007 1.00 Explains 37.71% of domain space-time variance Correlation with seasonal-mean (dec-feb) NINO4: -0.32 Correlation with seasonal-mean (dec-feb) NINO3.4: -0.36 Correlation with seasonal-mean (dec-feb) NINO3: -0.35 0.90 Explains 37.71% of domain space-time variant Centred window of 11 years 0.80 Centred window of 21 years 0.70 Centred window of 31 years Centred window of 41 years 0.60 Centred window of 51 years П index (HadISST) 0.50 0.40 0.30 vith Nino 0.20 0.10 correlations NIN0 4 198 -0.00 -0.10with -0.20-0.30relatio N -0.40-0.50-0.60-0.70-0.80-0.90-1.001900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 138E 143E 148E 153E Year at centre of window -0.54 -0.42 -0.30 -0.18 -0.06 0.06 0.18 0.30 0.42 0.54 0.66 0.78 0.90 Regression of EOT1 of dec-feb rainfall with HadISST SSTs for 1900-2007 90N 1000 900 Regression 60N 800 700 30N onto 600 500 0 400 <u>o</u> 300 HadlSS 200 308 100 60S 90S 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W -0.375 -0.325 -0.275 -0.225 -0.175 -0.125 -0.075 -0.025 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375

°C per 193 mm season⁻¹ (1 stddev) change in rainfall EOT timeseries

14S

24S

298

1100

spatial pattern

EOT

l timeseries

EOT

-300

Year at beginning of December-February period

National Centre for

Atmospheric Science NATURAL ENVIRONMENT RESEARCH COUNCIL

(U)

National Centre for

After the leading pattern has been removed, the remaining EOTs describe patterns of regional rainfall variations in Queensland.

EOT 2 pattern of summer rainfall is associated with variability in tropical-cyclone tracks and genesis locations.

(Caution: Limited data period)

The third EOT pattern is associated with a local circulation regime of onshore winds and increased moisture flux to southeast Queensland. **National Centre for**

National Centre for

Leading pattern of March-May rainfall describes state-wide variations, but no connection to Pacific SST variability **National Centre for**

hPa per 215 mm season¹ (1 stddev) change in rainfall EOT

National Centre for

NATURAL ENVIRONMENT

Atmospheric Science

northern Australia and increased synoptic variability, suggesting a longer monsoon season.

Second EOT for March-May describes variability in central and SE Queensland.

Timeseries displays decadal variability, confirmed by wavelet transform (next slide).

National Centre for Atmospheric Science

NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for

Atmospheric Science

RESEARCH COUNCIL

National Centre for Patterns of autumn rainfall variability **Atmospheric Science** NATURAL ENVIRONMENT RESEARCH COUNCIL

EOT3 for SILO 0.25, using seasonal means for mar-may 1900-2007

EOT 3 spatial pattern

ENSO emerges as the third EOT for autumn, likely due to weak ENSO signals during this season.

For other three seasons, leading (state-wide) EOT is associated with ENSO and IPO.

Twentieth Century Reanalysis rainfall

National Centre for

Twentieth Century Reanalysis rainfall

Comparison of 20thC V2 and SILO (on T62 grid) area-averaged, seasonal-mean (nov-apr) rainfall for Queensland - 1891-2007

National Centre for

Twentieth Century Reanalysis rainfall 🕑

Scatterplots of Nino 4 SST anomalies (HadISST) and Queensland annual-total (May-April) rainfall

Observations

Twentieth Century Reanalysis

National Centre for

Atmospheric Science

The Twentieth Century Reanalysis reproduces the observed asymmetric ENSO-rainfall correlation, but the magnitude of the correlation with La Nina is weak.

Summary and conclusions

- The Twentieth Century Reanalysis is enabling investigations of inter-annual and decadal-variability in Queensland's rainfall at the seasonal scale.
- Key advantages brought by the Twentieth Century Reanalysis
 - The ability to use the entire dataset of Australian rainfall, rather than being restricted to the second half of the 20th century.
 - The ability to sample several cycles of decadal and inter-decadal variability. Some EOTs are the same sign for most of the ERA-40 period!
 - Greater confidence that the EOT patterns accurately reflect variations in Queensland's seasonal rainfall
- Conclusions from EOT analysis
 - In summer, Queensland's rainfall is driven by a decadally varying monsoon circulation that is modulated by ENSO and the IPO.
 - Coastal circulations bring on-shore winds and rainfall to southern Queensland in summer. The frequency of these have decreased since the 1970s.
 - State-wide autumn rainfall is driven by the length of the monsoon season, which is un-related to Pacific SST variability.
 - Southern Queensland's autumn rainfall is also influenced by mid-latitude cyclones. The associated EOT shows significant decadal variability.