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Overview

What are flux regimes? Why do we care about
them?

Why use satellite data?

Where do the GSSTF2b and HOAPS3 variables
come from?

Climatology of fluxes and state variables from
each dataset

Cluster analysis method, and preliminary results
Future directions
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Where do the fluxes come from?
F LH =paLeCeU1 O(qs-a

* U,, =10 m wind speed (m/s)
HOAPS3 - SSM/I neural network retrieval
GSSTF2b - Wentz V6 SSM/I inverse radiative transfer model
* g, = Sea surface specific humidity (g/kg), derived from
SST, with correction for salinity

HOAPS3 - NODC/RSMAS AVHRR Oceans Pathfinder SST
v5.0 product

GSSTF2b - NCEP DOE Reanalysis V2 blended in situ and
satellite (AVHRR) weekly product

* g, = Air (10 m) specific humidity (g/kg)
HOAPS3 - linear combination of SSM/| radiances

GSSTF2b - EOFs relating 10m air humidity to SSM/I derived
total column and bottom layer precipitable water




Climatological Mean Fields
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Climatological Mean Evaporation
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Climatological Mean SST

Climatological Mean SST GSSTF2b ) 1989-2005 Climatological Mean SST HOAPS3 (C) 1989-2005




Climatological Mean Fields

Climatological Mean Evap GSSTF2b (mm/day) 1989-2005 Climatological Mean Evap HOAPS3 (mm/day) 1989-2005 Climatological Mean Evap GSSTF2b-HOAPS3 (mm/day) 1989-2005
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GSSTF2b evap
higher, seasonally
invariant ice mask

GSSTF2b SST
warmer, HOAPS3
has more small

scale structure

GSSTF2b drier,

seasonally
invariant ice mask



Climatological Mean Air Humidity
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Climatological Mean Fields

Climatological Mean Evap GSSTF2b (mm/day) 1989-2005 Climatological Mean Evap HOAPS3 (mm/day) 1989-2005 Climatological Mean Evap GSSTF2b-HOAPS3 (mm/day) 1989-2005

GSSTF2b evap
higher, seasonally
invariant ice mask

GSSTF2b SST
warmer, HOAPS3
has more small
scale structure

GSSTF2b drier,

seasonally
invariant ice mask

HOAPS3 windier



Climatological Mean Winds

Climatological Mean Wind GSSTF2b (m/s) 1989-2005 Climatological Mean Wind HOAPS3 (m/s) 1989-2005
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Interannual Variability
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* Interannual variability of wind fields is similar
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« HOAPS3 and GSSTF2b have opposite sign trends post-1999

* Interannual variability of wind fields is similar

Large interannual variability in SST not apparent in evap



Interannual Variability

Collocated GSSTF2b and HOAPS3 Evap (mm/day) ) annmean. , 40-80S GSSTF2b and HOAPS3 SST w/ ice mask (C) annmean, 40-80S Collocated GSSTF2b and HOAPS3 Hair (g/kg) annmean, 40-80S GSSTF2b and HOAPS3 Wind w/ ice mask (m/s) annmean , 40-80S
27 84 54 n
GssTFzb GssTFzb GssTF2b GssTrzb

« HOAPS3 and GSSTF2b evap have opposite sign trends post-1999

« GSSTF2b has upward trend in SST and consistent interannual
variability over entire period, HOAPS3 has downward trend until 1999,
then large interannual variability

« HOAPS3 and GSSTF2b have opposite sign trends post-1999

* Interannual variability of wind fields is similar
Large interannual variability in SST not apparent in evap

Different sign trend in evap post-1999 due mainly to
differences in air humidity trends



Cluster Analysis Methodology
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Cluster Analysis Results
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What We’ve Learned So Far

* There are differences between GSSTF2b and HOAPS3 which are
apparent from climatologies, but do not, in general, affect clusters.

« GSSTF2b and HOAPSS3 clusters are similar — generally two regimes,
one for summer and one for winter, with possibly a transitional mode.

« Exception is SST (which is not from SSM/I), where GSSTF2b and
HOAPS3 exhibit different behavior

« Evap-wind and evap-air humidity regimes display expected
relationship, but evap-SST does not, some or all of the time (depending
on dataset) — suggests SST is not directly controlling evaporation
(possibly indirectly via influence on air humidity?)
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Data wish list and thoughts for the future
* Smaller resolution data — cannot see fine scale features.

 Flux data near coasts/ice edge — would be great if we could see
polynas, coastal upwelling, the effect of cold air outbreaks, etc — we only
have data for the open ocean. Near shore/ice behavior could be very
different.

* Incomplete representation of fluxes when there are thick clouds and
rain — not sampling entire flux/component phase space.

» Would like to validate fluxes with ship/buoy/station data where possible.

* Cluster method found largest mode of variability, the annual cycle. To
find other modes, could try various options —

Remove annual cycle? Zonal means?

Analyze each season separately?

Composite by SAM phase?

Change limits of 2d histograms to focus on different parts of
parameter space?

What is optimum time resolution for analysis? Monthly vs. daily.
Another method entirely?
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