

Assessing the value of climate information in agriculture, forestry and livestock using a Stochastic Production Frontier Approach

Daniel Solís and David Letson

RSMAS-MAF University of Miami Southeast Climate Consortium

- The value of climate forecasts can be defined and evaluated in different ways.
- Most studies have focused on the potential effect of climate information on the financial performance (revenues, profit, etc.) of a farm.
- However, the use of economic performance measures, such as productivity, input substitution, inefficiency, etc., have received much less attention.

- Farm productivity and efficiency are important from a practical as well as from a policy point of view.
- Farmers could use this information to improve their performance.
- Policymakers could use this knowledge to identify and target public interventions to improve farm productivity and farm income.

- A review of the agricultural productivity and efficiency literature reports few studies include climate in their models (Bravo-Ureta et al., 2007)
- Researchers have omitted climate from their empirical models by arguing that such variability is beyond the control of the producers; therefore, it should be treated as a random variable.
- However, climate variability is not a pure random variable (Demir and Mahmud, 2002).

- Historical differences in climatic conditions are known with a reasonable degree of certainty.
- Advances in climate forecasting and the ability to predict climate fluctuations provide opportunities to improve farm management.
- Thus, omission of climate variables may lead to an inadequate representation of the production model.

Historical Evidence

Main drops in productivity

- 1) Global energy crises of 1974 and 1979,
- 2) Serious droughts in 1983, 1988 and 1995, and
- 3) Agricultural policy intervention (in 1983 the Federal Government encouraged farmers -using the Payment-In-Kind, or PIK programto reduce crop production to lower accumulated government-held commodity surpluses).

Objectives

The overall purpose of this study are:

- To evaluate the effect of climate biased in the estimation of Agricultural Productivity and Efficiency using aggregate data and the Southeast US as a case of study.
- To measure the effect (elasticity) of climatic variability on the Southeast US Agricultural Productivity and its three sector (Crop, Forestry and Livestock)
- To measure the value of climate information on the efficiency of US agriculture.

Methodology

- We implement the Stochastic Production Frontier (SPF) analysis, which is based on an econometric (parametric) specification of a production frontier.
- Frontier function provides the shape of the technology for the best performing decision making units.
- The frontier approach allows us to evaluate the effective gap between current farm productivity and the potential productivity level given the existing technology in a particular region.
- SPF is designed to incorporate stochastic disturbances into the model.

Stochastic Production Frontier: A Graphical Representation

Empirical model

To estimate the production frontier we use two alternative methods. •**First** we estimate an aggregate model (**SPF**) which uses the total agricultural value-added for each State as the output.

•**Second** we re-estimate the model using a multi-output approach (IDF = Input Distance Function) in which total agricultural output is disaggregated in its three components: agriculture, forestry and livestock.

These models can be represented as follows:

$$LnY_{i} = \beta_{0} + \sum_{j=1}^{m} \beta_{j} LnX_{ji} + 0.5 \sum_{j=1}^{m} \sum_{k=1}^{m} \beta_{jk} LnX_{ji} \ln X_{ki} + v_{i} - u_{i}$$
 SPF

$$-\ln x_{1i} = \alpha_0^I + \sum_{m}^{M} \alpha_m^I \ln y_{mi} + 0.5 \sum_{m_i}^{M} \sum_{m_n}^{M} \beta_m^I \ln y_{m_i} \ln y_{m_i} + \sum_{n}^{N-1} \beta_n^I \ln \left(\frac{x_{ni}}{x_1^i}\right) + \\0.5 \sum_{n_i}^{N-1} \sum_{n_i}^{N-1} \beta_n^I \ln \left(\frac{x_{n_i}}{x_{1i}}\right) \ln \left(\frac{x_{n_i}}{x_{1i}}\right) + \sum_{n}^{N-1} \sum_{m}^{M} \delta_{nm}^I \ln \frac{x_{ni}}{x_{1i}} \ln y_{mi} + D_s + v_i^I - u_i^I;$$

$$IDF$$

Empirical model

In these two model the error term is composed of two terms, v (stochastic shocks) and u which captures the technical inefficiency (TI) relative to the stochastic frontier.

Technical efficiency can be then estimated as:

$$\mathrm{TE}_i = \exp\Bigl(-\mathrm{E}\Bigl[u_i \middle| \varepsilon_i \Bigr]\Bigr).$$

Empirical model

To evaluate the effect of climate information on TE, we regress the TI scores against selected climatic indexes

$$u_i = \alpha_0 + \sum_{n=1}^m \alpha_n I_{ni} + e_i$$

where v_i is the inefficiency effect, I_{ni} is a vector of climate information variables, the α_s are unknown parameters and e_i is random noise.

Variables

Outputs:

- $y1 = Aggregate agricultural value-added (US$) \rightarrow SPF$
- y2 = Crop value-added (US\$)
- y3 = Forestry value-added (US\$)
- y4 = Livestock value-added (US\$)

Inputs:

- x1 = Cultivated land (Mz)
- x2 = Labor (US\$)
- x3 = Capital (worker days)
- x4 = Set of climate variables:
- ENSO phase
- Predicted seasonal rainfall
- Predicted seasonal TEMP
- D = Regional dummies (5 States)

Inefficiency:

Vector of alternative climate information variables including:

TDF

- ENSO phase
- Predicted seasonal rainfall
- Predicted seasonal TEMP

Data

- Production and Input Use data were collected from USDA-ERS.
- Climate data come from South East Regional Climate Center
- We construct a state-by-year panel, covering 5 contiguous states in the SE US over 50 years from 1960-2010 inclusive.
- Ball et al (2001) was follow to account for differences in quality and value of inputs and outputs.

Results - Outline

- Linkage Between Production and Climate Conditions (Correlation analysis)
- Climate Biased (SPF)
- Climate Elasticity by Sector (IDF)
- Value of Climate Information (Inefficiency Model)

Linkage Between Land Productivity and Seasonal Precipitation

Correlations Analysis (1960-2010)

State	State Annual Spring		Summer	Fall	Winter	
Region	gion 0.130 0.082		0.493 -0.146		-0.232	
AL	L 0.033 0.054		0.108 -0.061		-0.029	
FL	0.135	-0.065	0.110	0.153	0.088	
GA	0.052	-0.058	0.226	-0.005	-0.024	
NC	0.057	0.004	0.197	-0.056	-0.056	
SC	0.029	0.040	0.224	-0.118	-0.166	

- + correlation between <u>Annual</u> and <u>Summer PP</u> and Productivity
- Spring has a positive correlation but in FL and GA (FL and GA are big in vegetable production which is affected by wet winters)
- Fall and Winter PP have a (-) correlation but in FL

Linkage Between Land Productivity and Seasonal temperature

Correlations Analysis (1960-2010)

State Annual S		Spring	Spring Summer		Winter
Region	0.179	0.048	0.030	0.165	0.211
AL	0.433	0.017	0.178	0.130	0.449
FL	0.542	0.125	0.399	0.267	0.443
GA	0.314	-0.033	0.028	0.106	0.413
NC	0.011	-0.175	-0.108	0.053	0.125
SC	0.027	-0.157	-0.123	0.166	0.190

- Big <u>sub-regional variability</u>, Northern states behave differently than Southern States
- + correlation between <u>Annual</u>, <u>Fall</u> and <u>Winter</u> and <u>Productivity</u>
- Spring and Summer display mixed results

Climate biases - SPF

- We estimated 4 alternative models:
 - Model 1 does not include any climatic variables.
 - Model 2 includes climatic variables only in the inefficiency function with neutral effects.
 - Model 3 is a non-neutral specification with climatic variables in the inefficiency function.
 - Model 4 is a non-neutral specification with climatic variables in the production frontier and the inefficiency function (Full specification).

Climate biases - SPF

- Three separate null hypotheses were tested using the likelihood ratio test (LRT):
 - The null hypothesis that all production coefficients associated with the climatic variables are zero is strongly rejected.
 - The null hypothesis that all efficiency coefficients associated with the climatic variables are zero is strongly rejected.
 - Based on a LRT Model 4 (full representation) is the best representation for the data .

Climate biases - Elasticities

• It tells how much the level of production changes when we change one of the parameter in the SPF

Table 1. Elasticities of mean output and returns to scale with and without environmental variables inputs								
Variables	Without Environmental	With Environmental						
variables	Variables	Variables						
Land	0.20	0.68						
Labor	0.54	0.35						
Capital	0.72	0.12						
Return to Scale	1.46	1.15						

- The introduction of climate variable significantly affects the elasticity of inputs.
- RTS decreases by including climate

Climate biases - Ranking by level of productivity

USDA/ERS Official Ranking

Without Including	
Climate variability	

State	Ranking
Florida	1
Georgia	2
N. Carolina	3
Alabama	4
S. Carolina	5

▼ This model present same → results than in the official raking

State	Rank in 2004	
California	1	-
Florida	2	
lowa	3	
Illinois	4	
Delaware	5	
Idaho	6	
Indiana	7	
Rhode Island	8	
Georgia	9	
Massachusetts	10	
Arizona	11	
Arkansas	12	
North Carolina	13	
Connecticut	14	
Oregon	15	
New Jersey	16	
Maryland	17	
Minnesota	18	
Ohio	19	
Alabama	20	
Nebraska	21	←
Maine	22	
Washington	23	
New York	24	
Mississippi	25	
South Carolina	26	

Including Climate Variability

State	Ranking
Florida	1
Georgia	2
N. Carolina	3
S. Carolina	4
Alabama	5 🗸
↓ Ranki different affect <i>agricultu</i>	ngs are which may <u>national</u> ral policies

Climate Elasticity by Sector - IDF

	Region	AL	FL	GA	NC	SC		
	WHOLE SECTOR							
El Niño	0.11	0.07	0.08	0.08	0.11	0.09		
La Niña	-0.08	-0.05	-0.06	-0.04	-0.09	-0.08		
	CROPS							
El Niño	0.15	0.10	0.08	0.09	0.15	0.14		
La Niña	-0.09	-0.09	-0.07	-0.08	-0.12	-0.11		
	FORESTRY							
El Niño	0.06	0.05	0.04	0.06	0.08	0.07		
La Niña	-0.04	-0.04	-0.03	-0.04	-0.05	-0.05		
	LIVESTOCK							
El Niño	0.09	0.07	0.08	0.08	0.07	0.06		
La Niña	-0.06	-0.06	-0.07	-0.06	-0.03	-0.04		

Value in BOLD are statistically significant, p<0.1

Climate Elasticity by Sector - IDF

Summary

- Regional Climate variability (5 states together) shows <u>NO</u> significant impact on production. However, State level climate variability <u>DOES</u>. This difference could be explain by the <u>within region variability</u>.
- The impact of ENSO on the aggregate model display mixed results.
- Crops have the highest elasticities followed by livestock and forestry.
- The Northern region in the SE-US (SC & NC) displays the higher impact of climate variability of crop production.
- Climate variability has the highest impact on livestock production in the southern regions (heat shock, pasture production, etc.)

Value of climate information

We estimated 5 alternative models

- Model 1: Knowing that the cropping season is either El Niño or La Niña
- Model 2: Knowing that the cropping season is not normal (Neutral)
- Model 3: Knowing the predicted annual rainfall and average MAX TEMP
- Model 4: Knowing the predicted seasonal rainfall and MAX TEMP
- Model 5: Knowing that the cropping season is not normal (neutral) and the predicted seasonal rainfall and MAX TEMP

Value of climate information

	El Niño	La Niña	Enso	Annual	Summer	Spring	Average	Summer	Spring
				Rainfall	Rainfall	Rainfall	Max T°	Max T°	Max T°
Model 1	+	-							
Model 2			+						
Model 3				+***			+		
Model 4					+* **	+* **		+*	+
Model 5			+	+***			+		

***, p>0.01; **, p>0.05, *, p>0.1

Conclusions

- Productivity and efficiency studies on agriculture using regional data tend to ignore environmental effects, assuming that such variables are random.
- But it is found that agricultural production is under the influence of variations of climatic variables that are location-specific.
- If these environmental variables are ignored, it may cause improper specification of the TIE in models of agricultural production.
- Results shows that climatic variables affect directly and indirectly through interactions, mean output elasticities, economies to scale and technical efficiencies.

Conclusions

- When the climatic conditions are taken into account, States at locations with relatively unfavorable environmental conditions, are able to gain in terms of TE.
- Significant changes are observed in the size and spread of TE scores when climatic variables are incorporated in the production and inefficiency functions.
- The effect of Climate Information on agricultural efficiency present mixed results.
 - Non-significant results were found when ENSO was used as the climate indexes.
 - However information on seasonal rainfall and Max Temp display a positive and significant effect on reducing the inefficiency in this sector.

Work in Progress

- Re estimate the models using a new dataset (1960 to 2010)
- Re estimate the TE model using alternative methodology
 - Alvarez (2007) regional model
- Estimate the elasticity of climate information on TE.
 - Wang (2002) model
- Conduct a sensitivity analysis of the impact of seasonal rainfall and max temp forecasts on TE.

Deliverables

- Regional economic values for climate prediction.
- Transferable process for assessing value (\$) of weather and climate predictions to sectors.
- Method for estimating future value based on improved predictions.
- Presentation at professional conferences, publication of research, and final report.

Presentations

- Preliminary results have been presented in the following professional conferences:
 - 35th NOAA's annual Climate Diagnostics and Prediction Workshop (CDPW) Raleigh, NC, Oct 4-7, **2010**.
 - Southern Agricultural Economics Association annual Meeting, Corpus Christi, TX, February 5-8, 2011.
 - 9th NOAA's annual Climate Prediction Application Science (CPAS) Workshop, Des Moines, IA, March 1-4, **2011.**
 - 2nd Climate Information for Managing Risks Symposium, Orlando, FL, May 24-27, **2011**.
 - 36th NOAA's annual Climate Diagnostics and Prediction Workshop (CDPW) Fort Worth, TX, Oct 3-6, **2011**.

Research funded by:

NWS Office of Science and Technology (OST) Office of Climate, Water, and Weather Services (OCWWS)