
2.  There are two fundamentally different approaches to this problem. One can try to fit a theoretical distribution, 
such as a GEV or a GP distribution, directly to just the extreme values, whose sample size is necessarily limited. 
This approach has its attractions, but doesn’t really get around the sampling issue.   
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Introduction 

1.  Are century-long observational datasets and climate model simulations long enough to pin down the statistics of 
extreme events, and of changes in those statistics ? It is difficult to to do this directly using the necessarily small 
samples of extreme events in a decade or a century. This makes some form of modeling of the extreme-anomaly 
statistics a necessity.  

3.  Alternatively, one can try to fit a theoretical distribution to all values, not just the extreme values, and look at the 
tails of the PDF. If the PDF is Gaussian, then one need be concerned only with estimating the mean and the 
variance (the first two statistical moments), which are reasonably reliably estimated from century-long records. 
 One could argue that this approach is preferable to the first approach, certainly from a sampling perspective. 

4.  The difficulty with the second approach is that many extreme events are associated with the the extremes of 
daily weather. The PDFs of daily anomalies are not Gaussian. They are often skewed and heavy tailed.  This has 
enormous implications for extreme statistics. Our study is chiefly concerned with addressing this problem.  



  

 

 
P( x >  2 ) = 2.3%  
and increases by 
a factor of 7 
 
P( x > 4 ) = 0.003% 
and  increases by 
a factor of 43 
 
 
 
P( x >  2 ) = 3.4%  
and increases by 
only a factor of 4 
 
P( x > 4  ) = 0.34 % 
and  increases by 
only  factor of 3 

Non-Gaussianity has enormous implications for the probabilities of extreme 
values, and for our ability to estimate their changes using limited samples 
 
Consider Gaussian vs non-Gaussian PDFs, both  p(0,1), and shifted by 1 sigma	



 
 
Gaussian PDFs 
 
 
 
 
 
 
 
Non-Gaussian PDFs 
 
skewed and heavy-tailed 
with  
Skewness  S  = 1 
Kurtosis    K = 5  
 



Skewness    S = <x3>/σ3  and   Kurtosis   K = <x4>/σ4 – 3  of daily anomalies in winter 
 
computed over 137 winters (1871-2007) in the 20CR dataset (Compo et al 2011)  

         Skewness S          Kurtosis K     
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Some distinctive ���
features of the    ���
non-Gaussianity of ���
standardized daily 
anomalies at all N.H. 
grid points ���
���
computed using 137 
winters (1871-2007) 
of 20CR data 	
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Note the parabolic 
inequality  	


K   >   3/2 S2	



Note that the crossover 
point where p(x) = p(-x) 
lies between 1.4σ and 1.7σ	
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A generic “Stochastically Generated Skewed” (SGS) probability density function (PDF)  
suitable for describing non-Gaussian climate variability   (Sardeshmukh and Sura J. Clim 2009) 

! > 0        b > 0     
g  > 0  or  g  < 0       
E > 0
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               If  E/ 0,  then  p(x) /  a Gaussian PDF     

Such a PDF has power-law tails, its moments satisfy  K > (3/2) S2 ,  and  p(x) = p(!x) at  x̂ " 3  #
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The parameters of this model (and of the PDF) can be estimated using the first four moments of x and its 
correlation scale. The model can then be run to generate Monte Carlo estimates of extreme statistics 
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              If  E* 0 , this is just the evolution equation for Gaussian "red noise"   

This PDF arises naturally as the PDF of the simplest 1-D  damped linear Markov process that is 
perturbed by Correlated Additive and Multiplicative white noise (“CAM noise”) 

!1  and !2  are 
Gaussian white noises
of unit amplitude. 

A generic “Stochastically Generated Skewed” (SGS) probability density function (PDF)  
suitable for describing non-Gaussian climate variability   (Sardeshmukh and Sura J. Clim 2009) 
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               If  E/ 0,  then  p(x) /  a Gaussian PDF     

Such a PDF has power-law tails, its moments satisfy  K > (3/2) S2 ,  and  p(x) = p(!x) at  x̂ " 3  #



    Met. 101:  The PDF of vertical velocity  w  strongly affects the PDF of  precipitation  

Mean Descent         Mean Zero            Mean Ascent 
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(a)  skew = -1

No rain
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(b)  skew = +1

No rain

Prob. (%)

54.3
50.0

Light Rain

Prob. (%)

19.9
19.2

Heavy

Rain

Prob. (%)

1.010
0.137

To a first approximation, 
the precipitation PDF	


has the same shape as the 
shape of the w PDF for 
positive w	



This is the basic reason why  
the PDFs of even seasonal 
mean precipitation are 	


generally positively skewed, 
and are more skewed in 
drought-prone regions of 
mean descent	





Sharply contrasting behavior of extreme w  anomalies (and by implication, of extreme precipitation anomalies)  
 
obtained  in 108-day runs (equivalent to 106 100-day winters) of the Gaussian and non-Gaussian Markov models 
 
 

even in this 
statistically stationary world. 

 
Blue curves: Time series of decadal maxima                          
(i.e the largest daily anomaly in each decade  = 1000 days          
 = 10 100-day winters)   
 
Orange curves: Time series of 99.5th decadal percentile      
(i.e. the 5th largest daily anomaly in each decade)  

       Non-Gaussian (S=1, K=5)                    Gaussian       
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(b)  skew = +1

No rain

Prob. (%)
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Gaussian (red) and non-Gaussian 
(black, S=1, K=5) PDFs with same 
mean and variance   



Black  Curves:  Extreme Value PDFs of winter w  (or “precipitation”) maxima estimated  from   
                          106 model winters,  when the  PDF of daily  w  is Gaussian or non-Gaussian 
Shaded bands:  95% intervals of Extreme Value PDFs estimated using 25- or 100- winter records           
Outer bands:     95% intervals of raw histogram-based estimates using the 25 or 100 winter maxima 
Inner grey bands:     95% intervals of  GEV PDFs fitted to the 25 or 100 winter maxima  
Darkest grey bands:  95% intervals of Extreme Value PDFs derived from SGS distributions fitted to all 
                          daily values in the 25 or 100 winters 
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(b)  skew = +1
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 PDFs of daily  w :   
 Gaussian   

and non-Gaussian  
(S=1, K=5)   

The PDFs of winter maxima are VERY DIFFERENT if the PDFs of the daily values are 
Gaussian or “SGS”. They are also more accurately estimated by fitting  SGS 
distributions to all daily values than by fitting GEV distributions to just maximum values  

For 
Gaussian 

daily w 

For 
Gaussian 

daily w 

For non-
Gaussian 

daily w 

For non-
Gaussian 

daily w 

           PDFs of daily winter maxima (Extreme Value PDFs) estimated using  
                  25-winter records                                     100-winter records 

        Standardized w or “precipitation”              Standardized w or “precipitation”  
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The sampling uncertainties of GEV-based Extreme Value PDFs estimated from 25-yr 
records  are larger than the modest changes expected in the true PDF from , say, a 
15% increase in precipitation (red curve). The corresponding uncertainties from an 
SGS-theory based estimation are much smaller.	





 
Summary 

 
1.  The PDFs of daily anomalies are significantly skewed and heavy-tailed. This fact has enormous 

implications both for the probabilities of extremes and for estimating changes in those probabilities.      
Direct estimations from raw histograms or GEV distributions become even more prone to sampling errors than 
in the Gaussian case.  

 
2.  We have demonstrated the relevance of “stochastically generated skewed” (SGS) distributions for describing 

daily atmospheric variability, that arise from simple extensions of a linear Markov “red noise” process.  The 
parameters of these SGS distributions, and of the associated Markov model,  can be estimated from the first four 
moments of the data (mean, variance, skewness, and kurtosis). The model can then be run to generate not only 
the appropriate SGS distribution, but also to estimate sampling uncertainties through extensive Monte Carlo 
integrations.   

3.  We have shown that extreme-value distributions can be estimated more accurately from limited-length records 
using such a Markov model than through direct GEV approaches.  

4.  To accurately represent extreme weather statistics and their changes, it is necessary for climate models to 
accurately represent the first four moments of daily variability. The good news is that for many purposes 
this may also be sufficient. The bad news is that currently they do not adequately capture the changes of 
even the first moment (the mean), especially on the regional scales of direct relevance for climate policy.  

 


