

Climatic Role of North American Low-Level Jets on U.S. Regional Tornado Activity

Scott Weaver and Stephen Baxter

NOAA/Climate Prediction Center

36th CDPW

Motivation

- The Spring 2011 Tornado outbreaks caused devastating societal impacts with significant loss of life and property.
- Need for increased understanding, attribution, and prediction of seasonal tornadic activity.
- Previous observational studies indicate that ENSO linkages to spring U.S. tornado activity are weak.
- Local climate mechanisms that directly force variability in regional tornadic activity and their SST linkages remain to be characterized.
- NALLJs provide thermodynamic support and dynamic focusing mechanism for Severe Climate environment and provide a one-parameter assessment.
- Recent studies show mutidecadal variability and increasing interannual variability in warm season climate.

DATA

- SPC Severe Weather Database (SWD) for 1950-2010 for monthly tornado counts over the CONUS.
- SWD linearly detrended to ameliorate the effects of:
 - Changes in population & technology
 - Tornado assessment practices
 - National Weather Service guidelines
- NALLJ variability assessed via EOF analysis on AMJ meridional wind anomalies from NCEP/NCAR Reanalysis.
- Regional AMJ tornado anomalies formed by removing long term AMJ Climatology from each year's count.
- Regions defined based on NALLJ impacts.

NALLJ Variability Modes & Precipitation

NALLJ Variability Modes & Precipitation

Tornado Regions

NGP: 40-49N 105-90W SGP: 29-40N 105-95W SE: 30-40N 95-80W

NALLJ PCs

PC1 interannual & decadal variability. Generally positive (negative) in early (late) period.

PC 2 interannual variability but many back to back years with same sign anomalies.

PC 2 strong during 1973 tornado season and may account for much of 1973 tornado anomaly.

Weaker in 1974, although 1974 was dominated by 1 super outbreak.

PC3 interannual variability

1980's tornado hole had: -PC1 -PC2 +PC3

NALLJ & Tornado Correlations

	PC1	PC2	PC3
SE 50-78	-0.06	0.53	0.32
79-10	0.03	0.47	-0.15
NP 50-78	0.65	0.05	0.33
79-10	0.49	0.28	0.03
SP 50-78	0.31	0.13	0.46
79-10	0.57	0.25	0.13

Combined Influence of NALLJ Modes 1 & 2

Seasons where both PC1 & PC2	PC1 & PC2	PC1 & PC2
are both Positive (Negative) and Tornado anomaly is also Positive (Negative)	Both Positive	Both Negative
At least one Region	14/18 +	13/13 -
rtegion	78%	100%
All Regions	4/18 +	9/13 -
	22%	69%

Tornadic Parameters from CFSR 1979-2010

Remote Influences

- SST anomalies offer prospects for attribution and prediction.
- ENSO linkages are inconclusive, demonstrating a weak connection to the CONUS.
- Compare and contrast the spatial patterns of global SST variability to regional tornado indices and NALLJ PCs during early and late epochs.
- Strategy assumes no a priori assumption regarding the structure of associated SST variability, the case and limitation when targeting connectivity to indices of ENSO.

AMO structure in early period (1950-1978) even in Pacific SST footprint

PDO structure (off equatorial) in recent period (1979-2010) most notable for NALLJ PC1. Is the PDO structure real?

AMO structure in early period (1950-1978). Stronger in SE tornadoes than NALLJ PC2

Weak central equatorial Pacific in SE tornadoes. NALLJ PC2 also exhibits a warmeast to cold-west dipole across the equatorial Pacific, reminiscent of the Trans Nino (TNI) SST structure. The TNI was recently linked to 7/10 strongest tornado outbreaks in the last 60 years.

	PDO	AMO	TNI
PC1 50-78	-0.15	-0.34	0.13
79-10	-0.52	0.14	-0.20
PC2 50-78	0.21	-0.15	-0.02
79-10	0.13	0.06	0.39
PC3 50-78	0.25	-0.18	0.16
79-10	0.24	-0.10	0.04
NGP 50-78	0.04	-0.26	0.20
79-10	-0.30	0.22	0.00
SGP 50-78	0.08	-0.00	0.14
79-10	-0.32	0.05	-0.19
SE 50-78	0.16	-0.39	0.01
79-10	-0.22	0.23	0.07

Closing Remarks

- NALLJ variability modes linked to regional U.S. tornadic activity.
- Mutlidecadal variation in the strength of the NALLJ -Tornado connection.
 - Highlighted by the SGP/PC1 correlation nearly doubling and PC3 influence weakening in the recent period.
 - Reflection of the southward shift of NALLJs in the recent period.
- SST Links show Atlantic variability (AMO) in the early period, with Pacific variability (ENSO/PDO) in the late period.
- SST attribution is challenging given the mixed modal structures.
- Model simulations and advanced statistical techniques may prove fruitful in understanding the relative roles of the various SST patterns.

Hu and Huang 2009 J. Climate

SST Evolution

- Given our analysis season it can be difficult to attribute decadal-like SST over the Pacific to a purely decadal mode.
- Residual atmospheric forcing from previous season's ENSO may produce decadal-like SST variability over the north Pacific in spring (Atmospheric Bridge Paradigm).
- Although the observed contemporaneous ENSO connection is weak there may be a seasonal lag.
- Analyze lead lag correlations with 5 season window centered on AMJ.

d

٢

あい

Ser C

よう

Ó

0.5

0.4

0.3

0.2

-0.1

-0.1

-0.2

-0.3

-0.4

-0.5

Idealized SST Simulations

• SST forcing patterns gleaned from Rotated EOF analysis of annual mean SST anomalies for 1901-2004.

- Pacific pattern (20.5%)
- Atlantic pattern (5.8%)
- Models are forced with 2σ of all possible combinations and polarities of REOF patterns atop a monthly varying climatology for 50 years.

