NOAA’s Climate Program Office

Modeling, Analysis, Predictions, and Projections Program

Don Anderson
Annarita Mariotti
Dan Barrie
Overview: Climate Program Office

MAPP’s Major Objectives:
- Model Development
- Model Analyses
- Predictions/Projections
- Climate Applications
Overview: MAPP Program Activities

"To understand and predict natural variability and changes in Earth's climate system"

Extending NOAA’s research capability via competitive funding opportunities, Task Forces and a webinar series that connect NOAA with the broader community.
A Network of Research Task Forces

Strategically connecting scientists at NOAA labs, NOAA's operational centers and in the external community.

Drought Task Force
Advancing Drought Monitoring and Prediction

CMIP5 Task Force
Developing Projections for North America

Prediction Task Force
Advancing ISI climate prediction

- Each, 30-plus plus investigators; multi-institution/multi-agency participation
- Each includes PIs from ESRL, GFDL, AOML and NCEP; facilitates collaborative work.

MAPP Webinars
Facilitating communication
High-Resolution Climate Modeling

- A coordinated modeling experiment involving NCAR, GFDL, ESRL, and NASA to study the impact on MJO prediction of resolution and physics. [Involves hindcasts with GEOS-5, CAM5, HiRAM, and WRF]. (PI: Tulich)

- COLA’s high-resolution modeling experiments (ATHENA) to explore the hypothesis that high spatial resolution and process-resolving models can dramatically alter simulation of climate. (PI: Kinter)

HiRAM at GFDL

Observed cyclone tracks: 1981-2005
Simulated tracks: 1981-2005 (C180 model)

Courtesy of S Tulich, M Zhao
High-Resolution Climate Modeling

- Several projects focusing on extremes contributing to WCRP MJO Task Force, and U.S. CLIVAR Hurricane WG.

Includes a project at GFDL (Vecchi et al.) using high-resolution models (CM2.x suite and HIRAM) to look at the connection between the IAS and extremes.

- Innovative approaches to high-resolution (FY12 call):
 - Test adaptive vertical grid approach in the Multiscale Modeling Framework, which has been embedded in CAM. (PI: Marchand)
 - Experiments with two-way nesting with WRF-CCSM (PI: Colle)
Uncertainties in regional-scale climate projections

- Involves people at GFDL, NCEP, ESRL, AOML, NCAR, NASA and many universities.
- Comparison of various modeling techniques (high res. time-slices, dynamical downscaling, statistical methodologies), in the development of regional projections.
- A process-based approach to assessing uncertainties

A J of Climate Special Collection in preparation focusing on projections for North America, including regional aspects.
Regional-scale Climate Prediction

Does downscaling improve seasonal prediction skill?

-> Multi-RCM Ensemble Downscaling of NCEP CFS Seasonal Forecasts (MRED) Project (PI: Roads/Arritt)
 - Research inspired by NCEP needs.
 - Involved best and brightest from the RCM community and NCEP (ETA-UCLA, WRF, CWRF, MM5, RAMS..)
 - Tested the impact of resolution and RCM model physics on winter prediction skill (based the period 1982-2008)

Mixed research results:
- Seasonal skill determined by the skill of the driving GCM; mostly ENSO related.
- Some improvements in the statistics of extremes with downscaling.

Downscaling of CFS predictions (center panels) with CWRF (bottom panels) shows some improvements in the statistics of extremes if compared to observed (top panels). (Courtesy of Liang).
Multi-Model Ensemble for Drought and ISI Climate Prediction (NMME)

An experimental U.S. multi-model ensemble to improve ISI climate and drought prediction

MAPP successfully established a broad multi-institutional interagency-funded collaboration, led by NOAA (MAPP-CTB)

Supported activity:
• Involves U Miami, GFDL, NCEP, ESRL, NCAR, NASA, IRI, U of Princeton, COLA
• With NOAA/NSF/DOE/NASA support.
• Address modeling and prediction research questions
• Test specific metrics in a near-operational mode to help the design of an optimal system.

Potential Outcomes/Payoffs:
• An optimal design of a multi-model system
• Improvements in NOAA’s operational climate forecasts.
• An unprecedented accessible set of coordinated U.S. model predictions for research

NMME Forecast Verification analyses

Precipitation forecasts anomaly correlation
June-August; June start

Temperature forecasts anomaly correlation
June-August; June start

Courtesy of IRI
Drought Task Force
Advancing U.S. drought monitoring and prediction

Funding the Best Science and Innovation; Providing Coordination and Leadership
A multi-agency/multi-institution group of 30-plus MAPP Investigators

Extending NOAA’s Research Capability
Joint projects between scientists at GFDL, ESRL, NCEP and external investigators

Improving NOAA Operations
Projects to test research advances for NCEP’s operations

Contributing to National Efforts
Drought Monitoring and forecasting research for NOAA-led National Integrated Drought Information System

Contributing/Leveraging International efforts
Development of a Global Drought Information System
• Back Up Slides on NCPP
NCPP applies experience and research to the successful application of climate models to the development of structured approaches to climate change problem solving. NCPP is distinguished by:

- NCPP uses and links together existing capabilities and communities.
- NCPP is a governed community.
- NCPP emphasizes and integrates three paths of activity:
 - Cyberinfrastructure
 - Quantitative evaluation of climate predictions and projections
 - Translational narratives of direct use to practitioners
- NCPP is committed to open communities and open source development.
The making of a flood

- Exceptional amount of rainfall or snowfall
- Low or decreased interception, due to lack of vegetation
- Increase in overland flow
- Water saturated grounds
- Large increase in soil moisture
- Limited infiltration, due to frozen ground, soli type, soil saturation
- Limited evaporation
- Increase in baseflow
- Sudden increase in temperatures and rapid snow melt; or prolonged melting of above average snowpack
- Large amounts of snow on the ground
- Increase in baseflow

Runoff = Precipitation – Infiltration – Interception - Evaporation
NCPP is an effort focused on how to build organized, trusted, scientifically robust, usable climate information in a world of scattered resources, scattered capabilities, and in constant flux. We are focused on the organization as a whole and knowing how we solve problems - knowing what is available, building partnerships, decision making as an organization, science-based evaluation of products, application-specific guidance based on those products, and development of an infrastructure to organize and sustain the effort. Community is essential; it is the only way to extend across the complexity and it is essential for the emergence of standards and services.