Sustaining Marine Resources in a Changing Climate

Ned Cyr, Roger Griffis (NMFS)
Krisa Arzayus (NESDIS)
Climate change is already impacting marine ecosystems and the communities & economies that depend on them.

- These impacts are expected to increase.

- There is much at risk domestically and internationally (food, jobs, revenue, human health, security, heritage etc).

 - Food: 1.5 billion people (world-wide)
 - Fisheries Jobs: 43.5 million (world-wide), 1.3 million (US)
 - Fisheries economies: $200 B in sales/income impacts (US)
 - Coastal economies: 60 % GDP (US)
 - Transportation: Shipping, commerce, safety
 - International relations and security issues
Diverse audience for marine-climate products and services

- Living marine resource scientists and managers
 - Federal govt (NOAA, USFWS, USGS, EPA)
 - State govts (35 State Fish and Wildlife Agencies)
 - Indigenous govts (Tribal Fish and Wildlife Agencies)
 - Academic partners (NSF, Sea Grant, universities)

- Ocean use scientists and managers (DOI, DOD, DOT, DHS-USCG)
- Ocean-dependent industries (energy, aquaculture, fishing, tourism, shipping)
- Ocean-dependent communities & economies (local, state, regional)

Increasing demand for regional products and services

- What has changed? Why has it changed?
- How will it change? When will it change?
- How prepare? How reduce impacts?
Impacts of Climate Change on Marine Ecosystems

Climate Changes
- ↑ temperature

Physical Impacts
- ↑ sea surface temperature
- Δ stratification
- ↑ extreme weather events
- Δ circulation
- ↑ incidence of hypoxia
- Δ salinity
- ↑ sea level rise
- ↑ ocean acidification

Biological Impacts
- Δ distribution
- Δ abundance
- Δ phenology
- Δ survivorship
- Δ productivity
- ↑ incidence of disease
- Δ invasive species

Social Economic Impacts
- Δ ocean dependent activities (location, timing, type)
- Δ revenues & economics
- Δ industry diversity
- Δ subsistence use
- Δ human health risks

International Impacts
- Δ trans-boundary species
- Δ highly migratory species
- ↑ partnerships
- Δ treaties
- Δ transportation
- Δ security

Mitigation Efforts
- ↓ emissions, ↑ sequestration

Adaptation Efforts
Reduce existing stressors, manage for resilience, seek beneficial opportunities etc
Observed or Projected Climate-related Changes in U.S. Marine Ecosystems
Over past 40 yrs:
• 60% major fish stocks have shifted distributions poleward (1 mile yr$^{-1}$) and/or deeper (0.8 ft yr$^{-1}$).
• Species shifting at different rates (25-200 miles poleward)
• Also changes in abundance, phenology, species assemblages
• Why changing? Future changes?

Source: Nye JA et al. (2009), Hare et al. (2010)
Will Some Species Thrive In A Changing Climate?

Projected Increase in Atlantic Croaker Populations

PROJECTIONS:

• Increased juvenile recruitment.
• 50-100 km northward shift in distribution.
• 60-100% increased biomass.
• 30-100% increased maximum sustainable yield.
• Potential increased fisheries?

Triangles = fishing rates at maximum sustainable yields (FMSY).

From Hare et al 2010.
How will fish catch change by 2100?
The Challenge 3: Lack of integrated products and services

What has changed?
- OBSERVATIONS
 - climate
 - oceans
 - Biological resources
 - Social & economic

Why did it change?
- RESEARCH
 - climate
 - oceans
 - Biological resources
 - Social & economic

How will it change?
- PROJECTIONS
 - climate
 - oceans
 - Biological resources
 - Social & economic

Spatial scales:
- regional to basin

Time scales:
- annual to decadal

Products
- Fishery management plans
- Protected species & area management
- Public & private investments

Decision Makers
- Why change?
- What changed?
- Future change?
- What action to take?
Vision:

Marine resource managers and other decision-makers will have access to, and sufficient knowledge to apply, best available information to manage large marine ecosystems in a changing climate.

Strategy:

Build and sustain core set of products & services:

– coordinated observations,
– targeted research &
– integrated physical-biological models.
1. **Delivering ocean data & products (Global Ocean Observing System):**
 - SST products based on satellite data and in-situ validation network.
 - Salinity data from Argo (to 2000m depth) to assess salinity variability.
 - Continuous high resolution regional observations from remote, moored and shipboard platforms (Bering Sea, Calif Current etc).
 - Growing ocean acidification observation network.

2. **Advancing assessments & projections:**
 - New modeling tools (e.g., Earth System Models, Cobalt)
 - Regional projections (Bering Sea, Calif Current, North Atlantic)
 - Rapid assessment protocol – fisheries climate vulnerability

3. **Building understanding and capacity:**
 - Targeted research on ocean-climate linkages (NMFS, OAR, NOS)
 - New support for application of climate info in marine management (COCA, RISA)
 - Needs Assessment (Climate Ready Marine Resource Management)
Focus Area Organization

Executive Working Group

- Director, NMFS/Science & Tech (Chair)
- Director, OAR/CPO
- Director, OAR/GFDL
- Director, OAR/ESRL
- Director, OAR/PMEL & AOML
- Director, NESDIS/NODC
- Director, NESDIS/NCDC
- Director, NWS/CPC
- Director, NOS/NCCOS

* PROPOSED

Project Lead

- Roger Griffis, NMFS/Science & Tech

Working Group

Advisory Group & external partners

Project Plan

Regional Pilots

Execution Agreements
Key Scientific and Technical Issues

- **What are the critical observing requirements** (physical, biogeochemical, etc) for early warnings and projections of climate impacts in marine systems?
- **What are the key physical, chemical and biological indicators** to track?
- **How integrate observations and modeling** with sufficient spatial and temporal resolution to enable skillful marine ecosystem predictions?
- **What are the best modeling tools/approaches** to provide regional scale projections of climate impacts on marine resources?
- **What changes & impacts have already happened?**
- **How well can we project climate impacts** on species or users?
- **What spatial and temporal resolution is most useful** to decision-makers – and can we deliver at these scales?
- **Can the resource management process incorporate and respond** to information on past and future climate impacts?
1. **FOCUS AREA:** Regional projections of climate impacts on marine resources

2. **PRODUCT LINE:**
 - Impact assessments (to date)
 - Risk assessments (outlooks, projections)
 - Spatial scale? Temporal scale? Species? Format?

3. **ISSUES:**
 - Integrating efforts across NOAA
 - Integrating efforts with non-NOAA partners (e.g., other feds, academia, regional ocean observing systems, state agencies)
 - Engaging decision makers
 - Engaging ocean-dependent sectors, users
 - Leveraging federal, state and non-govt science enterprise
2005 moored temperature and zooplankton data reveal unfavorable ocean conditions for recruitment.
2005 moored temperature and zooplankton data reveal unfavorable ocean conditions for recruitment.

Stock assessment model reveals low/declining recruitment.
2005 moored temperature and zooplankton data reveal unfavorable ocean conditions for recruitment

Stock assessment model reveals low/declining recruitment

NPCREP warning of poor environmental conditions reported in assessment documents
Fishery Management Council’s Science and Statistical Committee (SSC) receives warning

NPCREP warning of poor environmental conditions reported in assessment documents

2005 moored temperature and zooplankton data reveal unfavorable ocean conditions for recruitment

Stock assessment model reveals low/declining recruitment

Help?
Council adopts SSC recommendation to reduce pollock harvest based on assessment and continuation of poor (warm) environmental conditions.

Fishery Management Council’s Science and Statistical Committee (SSC) receives warning.

2005 moored temperature and zooplankton data reveal unfavorable ocean conditions for recruitment.

NPCREP warning of poor environmental conditions reported in assessment documents.

Stock assessment model reveals low/declining recruitment.
Council adopts SSC recommendation to reduce pollock harvest based on assessment and continuation of poor (warm) environmental conditions.

Stock assessment model reveals low/declining recruitment.

NPCREP warning of poor environmental conditions reported in assessment documents.

2005 moored temperature and zooplankton data reveal unfavorable ocean conditions for recruitment.

Fishery Management Council’s Science and Statistical Committee (SSC) receives warning.

Quota cut from 1.6 to 0.8 million tons.