Seasonal (sub-extreme) Hot Weather: Public Health Impacts and Prevention

Thomas Matte, MD, MPH, Assistant Commissioner
Bureau of Environmental Surveillance & Policy
New York City Department of Health and Mental Hygiene

Workshop on Climate Information Systems for Heat Health Early Warning
July 28, 2015
Heat Advisory Criteria for NYC

- 1997-2006 analysis
- HI vs alternative, correlated metrics
- Non-linear and lagged effects
- Confirmed risk at sub-extreme temperatures
- NYC advisory level
 - tradeoff of frequency vs risk
 - 2+ days with HI ≥95°F
 - 1+ day with HI ≥100°F

Figure 1: Risk ratio (and 95% CI) for the association of death rate per person comparable to previous heat waves (not including the study area) with heatwave days. Grey lines indicate significance at 5% level. Each risk ratio function is adjusted for temporal covariates for year, season, and day of week and for the composite lagged exposure effect.
Heat-associated mortality, extreme and non-extreme - NYC

- EHE excess non-external ~ 100
- All excess non-external ~ 350
- ‘Heat-specific’ ~ 13 (most during EHE)
- Mortality data lags by days -> months
- “Syndromic” heat ED and EMS spike during EHE

Sources: 2013 MMWR 62;617-621; Matte et al. 2014; NYC SIRR 2013
Heat-health surveillance

- During events: heat EMS and ED
- After extreme events: heat-related OCME case review
- Periodically, update multi year excess mortality modeling

2013 New York City heat-related deaths and maximum temperature or heat index

Heat-risk associations
NYC and elsewhere

- Risk increases across range of warm season temps
- ‘Heat waves’ mostly non-linear, lagged, and consecutive effects
- Vulnerability: social disadvantage, health, no AC, less green
- In NYC, residential exposures important in deaths and admissions
- Large vulnerable populations
- Power outage, other events can increase risk with seasonal heat
- Heat-mortality slopes have declined (why?)
- Heat-mortality risk across seasonal temps used climate change impact estimates.
- Excess and heat-specific deaths sometimes inappropriately compared
Heat Emergency Response Tactics

• Health advisories: public, clinical providers, VP service providers
• Cooling Centers
• Vulnerable population provider outreach (home-based and homeless)
• Formal and informal buddy systems
• Protection of water and power supply
Continuum of risk, response, and surveillance

Adaptation:
- UHI mitigation
- Building changes
- Improve population health

How often does the temperature occur?

How high is the risk?

- A/C provision, pre-season and routine outreach and education of vulnerable
- Alerts, outreach to most vulnerable
- Emergency responses

Syndromic during event

Periodic retrospective surveillance and research with vital records, ME, hospital data
How has evidence informed our strategies?

• Near-term strategies
 – Partner with NWS re: advisory criteria and messages
 – Promote cooling center use
 – Enhance vulnerable population outreach
 • Service providers
 • CBOs and public

• Long-term strategies
 – Urban heat Island mitigation:
 Cool roofs, tree planting
 – Community engagement
 – Electric grid resilience
 – A/C subsidies+responsible use
 – Code changes
 – Population health promotion (e.g. active transportation, nutrition)
A few communication Challenges

• Message penetration depends on others with larger audiences (e.g. media, NWS)
 – Extreme heat events – not exotic and no dramatic visuals
 – Outdoor activities vs
 – Indoor, hidden vulnerable

• Continuum of risk
 – Seasonal measures for vulnerable population and providers
 – Mobilize early for extreme events

• Air conditioning:
 – Messages for vulnerable
 – Responsible use for others including commercial
 – Public health protection vs CC mitigation
Stay cool