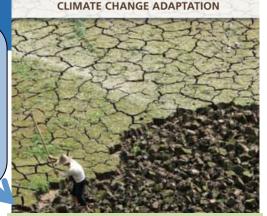


Crafting Integrated Information Systems (across weather and climate timescales)

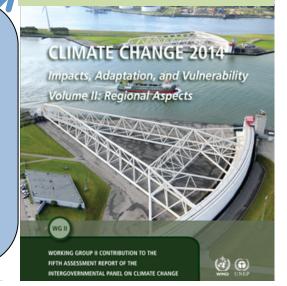
Roger S. Pulwarty Senior Advisor for Climate, and Director, National Integrated Drought Information System NOAA

'No or low regrets' practices with demonstrated evidence of having integrated observed trends in disaster risks to reduce the effects of disasters

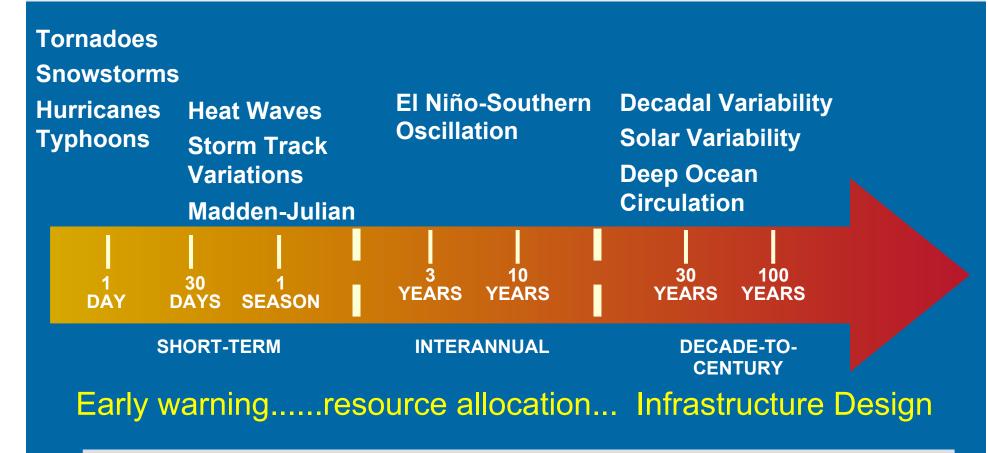

- Effective early warning systems and emergency preparedness (*very high confidence*)
- Integrated water resource management (high confidence)
- Rehabilitation of degraded coastal and terrestrial ecosystems (*high confidence*)
- Robust building codes and standards reflecting knowledge of current disaster risks (*high confidence*)
- Ecosystem-based/nature-based investments, including ecosystem conservation measures (high confider
- Micro-insurance, including weather indexed insurance (medium confide)
- Vulnerability-reducing measures suc pro-poor economic and human development, through for example improved social services and protec employment, wealth creation (very confidence)

Practices that enhance resilience to projected changes

Effective early warning systems and emergency preparedness


- Integrated coastal zone management integrating projections of sea level risk and weather/climate extremes (*medium confidence*)
- National water policy frameworks and water supply infrastructures, incorporating future climate extremes

Vulnerability reducing measures such as propoor economic and human development, through improved social services and protection MANAGING THE RISKS OF EXTREME EVENTS AND DISASTERS TO ADVANCE


Risk Management

Resilience

Changing Conditions

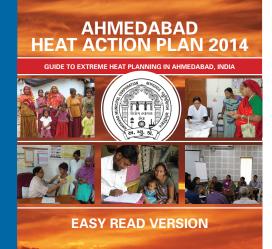
Weather-Climate-a Continuum and an adaptation deficit.....

Mental models: What do people already know and believe?

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION DWD

We are good to predict heat load at scales of day-to-day forecast on county level...

...by using a thermo-physiological impact
model and inclusion of adaptation and indoor heat load

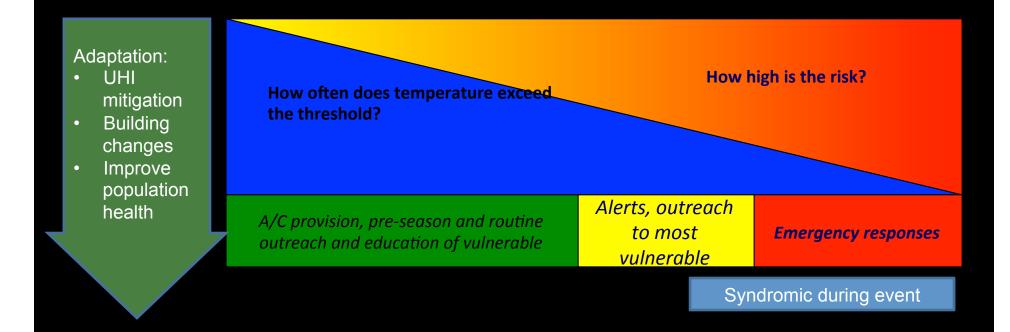

On longer time scales just temperature is used for heat pre-information so far

Forecast skill and user needs do not yet match very well

Adaptation to climate change in the health sector requires a combined assessment of downscaled climate projections and socio-economic information

Ahmedabad Heat Action Plan 2013-2014 – Key activities

- Analysis of local data -2010 and setting cutoffs
 Public awareness of the risks of extreme heat and actions to be taken
- •<u>Training of medical officers</u> and hospital staff for better management of heat illness supplies to hospitals

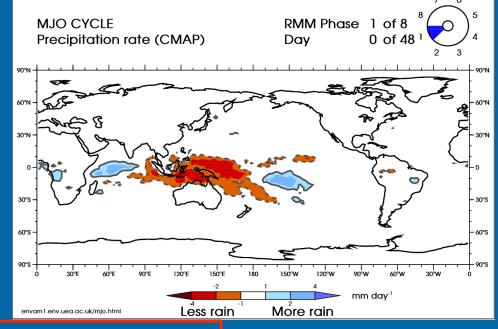


Information network to inform various departments.
Learning from international experiences and best practices

 Media engagement for public awareness
 Created advance 7-day forecast for heat early warning system -CFAN center at Georgia Tech. USA

Continuum of risk, response, and surveillance

Periodic retrospective surveillance and research with vital records, ME, hospital data


Prospects for Subseasonal Heat Predictions

Predictable, slow varying, climate oscillations such as tropical variability (e.g. MJO) Modulate the probability of occurrence of extreme weather events

Modulate probability of occurrence of critical impacts including the heathealth relationship

An important example:

The Madden Julian Oscillation (MJO) can impact the pattern of high and low pressure in the Extratropics and can result in high impact events

Courtesy: Augustin Vintzileos – University of Maryland ESSIC

Key issues: examples, others?

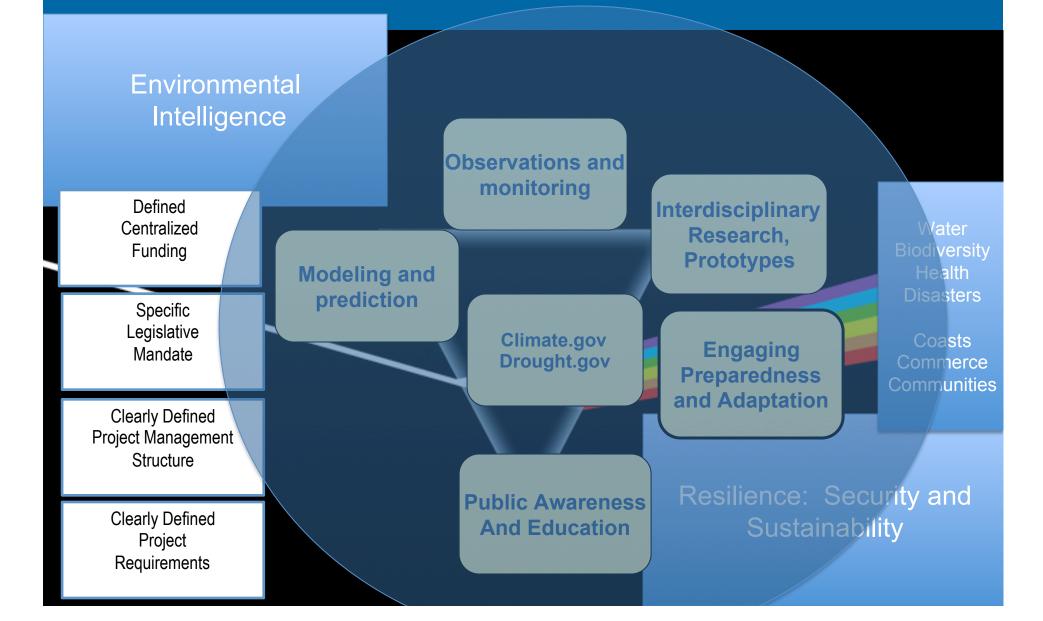
Indices, energy balance: Triggers and thresholds


- Relative roles of Tmax, Tmin. In different cities etc (Phoenix vs New York)
- Preceding events e.g. July 2003 impacts prior August 2003 peak
- Within city distribution of events
- Bounded rationality-Too much warning –advisory, multiple pathways of communication
- Additional variables?: air quality measures
- Governance of heat as hazard –lead agency

What is an integrated information system?

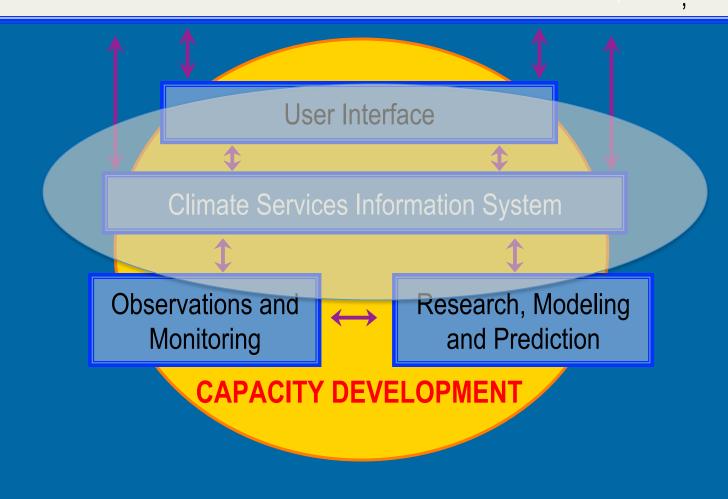
• The development and delivery of a forecast, projection.....

Early warning to early action



The systematic collection and analysis of relevant information about and coming from areas of impending risk that:

- (a) Inform the development of strategic responses to anticipate risks and opportunities and their evolution; and
- (b) Communicate options to critical actors for the purposes of decision-making and response


An "investment" not an "expenditure"

Information Systems from intelligence to resilience

Components of the GFCS

Users – Government, private sector, research – agriculture, water, health, construction, disaster reduction, environment, tourism, transport, etc.

Sustaining services: Climate knowledge and risk management governance

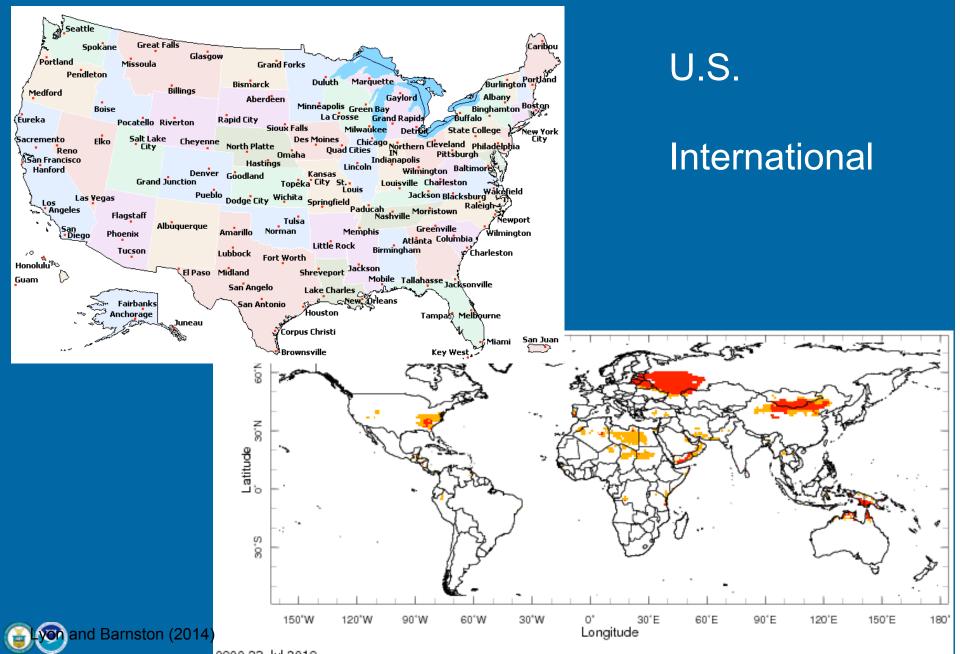
Ensure political authority and policy coherence Decentralize step-by-step and incremetally Develop a culture of partnership Partners do not just share information-they also share risks and responsibilities

<u>Accountability</u>- located with planning/fiscal oversight- political authority and policy coherence across sectors. **Emergency management organizations can rarely play that role**

Efficiency- achieved in partnership with at-risk sectors and local communities and organizations that represent them-

What next? Crafting and Implementing National Heat-Health Information System(s) for emergent

risks



 Unit of analysis-urban, watershed, state, national, transboundary

Pilots-Objectives

- <u>Champions/constituencies</u>
 - Focusing event(s)
 - Temporal-spatial scales
- National and International partners: Learning from cases
 - Resources, Timelines

Why, What, Where, How, and, with Whom?

0000 23 Jul 2010

Mutual priorities, resource dependencies and responsibilities across

programs

Monitoring & Prediction: MAPP, Climate Observations

Interdisciplinary research, applications, and assessments: RISAs, SARP

Integrated Information Systems: Preparedness and Resilience

Communication and Outreach: RCSDs, NWS, Comm-Ed Engaging Preparedness & Adaptation Communities:

RCCs, Coastal Services, RISAs, NMFS Habitat

Perfect Heat Health Warning System

reliable

easy to handle

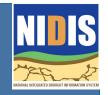
- Forecast skill
- Health relevance

Single & multiparameter indices

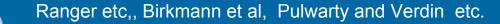
- No complicated modelling
- Easy to implement
- Low requirements for input data
- universal

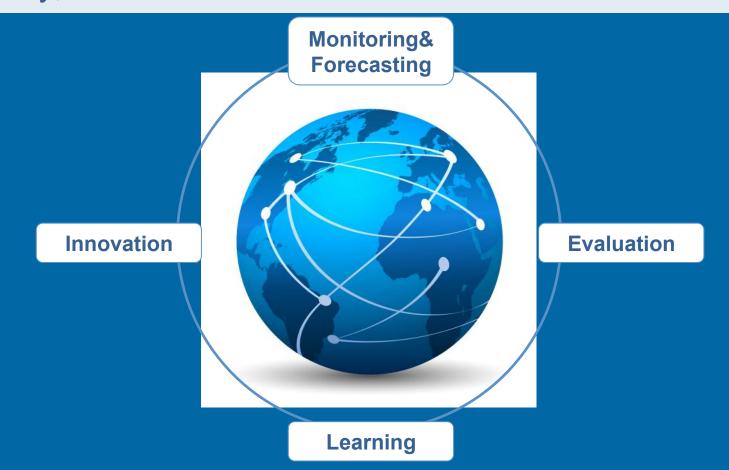
effective

- Trigger interventions to prevent heat related health impacts
- communication
- sufficient lead time


-Improving scientific and institutional knowledge, <u>agility and</u> <u>alignment</u>: Integration Team leads

MENT OF


- Integrate into existing networks
- Quality: climate research and information services that match user requirements
- Assess impediments to the flow of knowledge among existing components
- Policies and practices that can limit or facilitate researchpartner networks working as a system
- Opportunities for learning and institutional innovation and identifying priorities back up the research chain

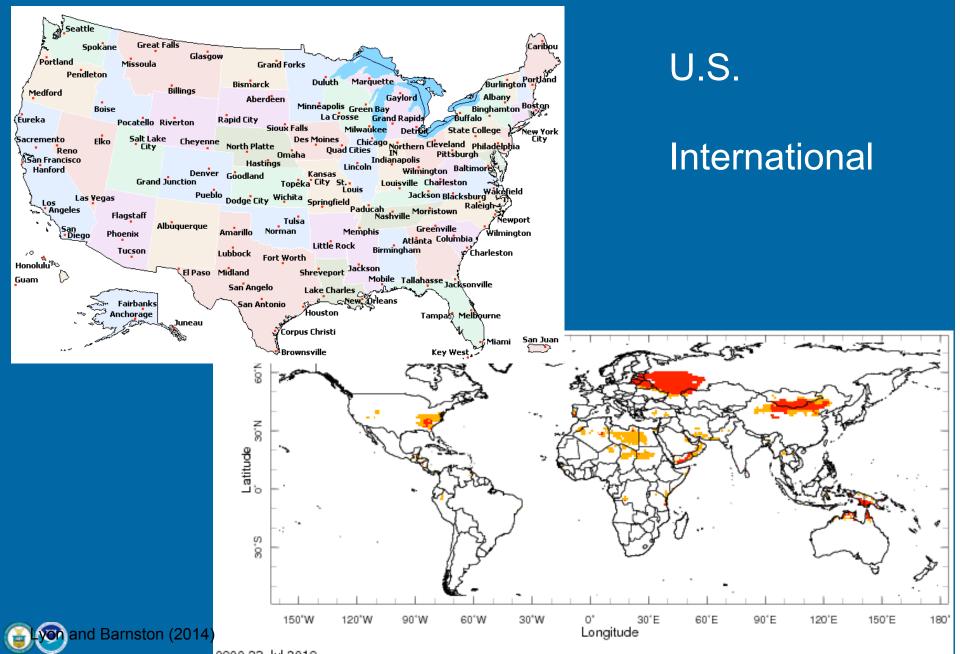

Creating integrated *information* systems: "The "last mile" is by far the longest."

	Sub-Saharan Africa	South Asia	Caribbean	
Underpinning Science and Data	Considerable gaps in data availability and monitoring	Gaps in science for drought & landslides, vulnerability & exposure	Gaps in science for floods & droughts, vulnerability & exposure	
Risk Assessment Warnings Tools	Some systems in place but major gaps, particularly for flooding	Generally, systems in place for main hazards but some gaps	Generally, systems in place for main hazards but some gaps	
Communication/ Dissemination	Major gaps in communication to the most vulnerable	Major gaps in communication to the most vulnerable	Generally, systems in place for main hazards but some gaps	
Response	Information (risk assessments/warnings) does not always lead to action	Information (risk assessments&warnings) does not always lead to action	Information (risk assessments&warning) does not always lead to action	

Focus on <u>capacity and improving decisions-</u> <u>not just information delivery</u>: Learning from Chicago, Germany, Ahmedabad-

How often should criteria for "robustness" be (re)considered? How should learning (among the cases) take place?

What next? Crafting and Implementing National Heat-Health Information System(s) for emergent risks


Pilots-Objectives

- Unit of analysis-urban, watershed, state, national, transboundary
 - Focusing event(s)
 - <u>Champions/constituencies</u>
 - Temporal-spatial scales
- National and International partners: Learning from Cases

• Resources, Timeline

Why, What, Where, How, and, with Whom?

0000 23 Jul 2010

Climate Information products

Historical Data	Climatologies Special Publication	Indices Analyses for CC Metadata	Status repor Reviews	ts Near real t data/ analysis	ime Web accessible statistics, visualization		
Relative status of information STATICDYNAMIC							
Structura	l Manageme	ent Operatio	ns Publi	ic information	Planning		
Design Safety fac Energy	tors Site plannir Community and well be Climate rela	health Streamfl	and health pla ow Re allo Ag	tional drought inning source ocation riculture zards and	Monthly/ seasonal Planning Internationa Markets		
Zilman, Pulwarty others			hea	alth	Demand		

