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Abstract    
We  perform  a  buoyancy  budget  analysis  of  bottom-­‐‑intensified  mixing  in  the  abyssal  ocean  and  
find   that   while   the   interior   of   the   ocean   exhibits   diapycnal   downwelling,   strong   dianeutral  
upwelling   occurs   in   very   thin   continental   bottom   boundary   layers.      For   a   given   amount   of  
Antarctic   Bottom  Water      which   is   upwelled   through   neutral   density   surfaces   in   the   abyssal  
ocean   (between   2000m   and   5000m)   up   to   five   times   this   volume   flux   is   upwelled   in   narrow  
turbulent   sloping   bottom   boundary   layers,   while   up   to   four   times   the   net   upward   volume  
transport   of   Bottom  Water   flows   downward   across   isopycnals   in   the   near-­‐‑boundary   stratified  
ocean  interior.    

1    Introduction  
The   classic   “abyssal   recipes”   paper   of   Munk   (1966)   achieves   the   diapycnal   upwelling   of  
Antarctic   Bottom   Water   via   a   one-­‐‑dimensional   advection/diffusion   balance   which   was  
consistent  with   a   constant   diapycnal   diffusion   coefficient   of   about    10−4 m2 s−1    throughout   the  
ocean   interior.      Since   the   buoyancy   frequency   increases   with   height,   this   one-­‐‑dimensional  
advection/diffusion  balance  implies  that  the  magnitude  of  the  buoyancy  flux  and  therefore  the  
dissipation  of   turbulent  kinetic  energy   increases  with  height;  however  observations  and  theory  
over  the  past  twenty  years  have  shown  just  the  opposite,  namely  that  diapycnal  mixing  activity  
increases  towards  the  sea  floor.        

In   the   past   twenty   years,   and   particularly   as   a   result   of   the   Brazil   basin   experiment   of  
WOCE,  observations  and  theory  have  shown  that  most  of  the  diapycnal  mixing  activity  in  the  
deep  ocean  occurs  above  rough  bottom  topography  and  is  bottom  intensified  with  an  e-­‐‑folding  
height   above   the   bottom  with   a   typical   vertical   e-­‐‑folding   length   scale   of   ~500m   (Kunze   et   al  
(2006)).      However,   this   bottom   intensification   of   diapycnal   mixing   causes   diapycnal  
downwelling,   and   so   it   is   not   possible   to   have   the   diapycnal   upwelling   of   Antarctic   Bottom  
Water  in  a  one-­‐‑dimensional  situation.     This  points  to  the  importance  of  the  ocean  topography,  
namely  that    the  ocean  does  not  have  a  flat  bottom,  nor  vertical  walls.        

de   Lavergne   et   al.   (2016)   have   diagnosed   the   negative   diapycnal   transport   in   the   ocean  
interior  caused  by  near-­‐‑boundary  breaking  internal  waves  and  they  have  pointed  towards  the  
important  role  of   the  turbulent  bottom  layer  (BBL)   in  order  to  upwell   the  AABW  and  to  close  
the   circulation.      Ferrari   et   al.   (2016)   have   studied   the   crucial   role   of   these   BBLs   in   allowing  
sufficiently   strong   upwelling   across   isopycnals   therein   to   overcome   the   downwelling   in   the  
near-­‐‑boundary   stratified   interior,   while   further   away   from   the   ocean   boundaries   there   is   no  
diapycnal   motion.      This   view   of   the   abyssal   circulation   contrasts   sharply   with   our   previous  
view  of  the  diapycnal  upwelling  being  distributed  uniformly  over  the  deep  ocean  basins.    In  the  
particular  model  studies  performed  by  Ferrari  et  al  (2016)  the  upwelling  in  the  narrow  turbulent  
boundary  layers  varied  from  two  to  three  times  the  mean  upwelling  transport  of  AABW.      
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The  feature  that  causes  this  rather  dramatic  change  in  where  we  expect  diapycnal  motion  
in  the  abyss  is  the  bottom-­‐‑intensification  of  the  diapycnal  buoyancy  flux.    In  the  present  paper  
we  examine  the  volume-­‐‑integrated  buoyancy  budget  between  pairs  of  buoyancy  surfaces  in  the  
abyss  using   the  Walin   framework   for   including   the   influence  of  diapycnal   transports   and   the  
boundary   flux   of   buoyancy   (that   is,   the   geothermal   heat   flux).      By   assuming   that   the   bottom  
intensification  occurs  in  an  exponential  fashion,  we  are  able  to  relate  the  downwards  diapycnal  
volume  transport  in  the  near-­‐‑boundary  ocean  interior  (called  the  Stratified  Mixing  Layer,  SML)  
to   the   total  diapycnal  diffusive   buoyancy   flux   across   a   buoyancy   surface.     Use   of   the   steady-­‐‑
state  volume-­‐‑integrated  buoyancy  balance  leads  to  very  simple  expressions  (Eqns.  (13)  and  (14))  
for   both   the   upwelling   diapycnal   volume   flux   in   the   BBL   and   the   downwelling   diapycnal  
volume  flux  in  the  SML,  in  terms  of  the  net  upwelling  of  AABW  in  the  abyss.    The  application  
of  the  Walin  budget  framework  with  respect  to  density  surfaces  in  the  abyss,  and  the  resulting  
Eqns.  (13)  and  (14)  are  the  main  results  of  this  work.    

One  of  the  main  conclusions  is  that  the  magnitude  of  the  area-­‐‑integrated  buoyancy  flux   F   
on  a  global  buoyancy  surface  must  be  an  increasing  function  of  buoyancy  in  order  to  have  net  
upwelling  through  a  stably  stratified  ocean.    There  are  two  ways  of  ensuring  that  the  magnitude  
of  the  area-­‐‑integrated  buoyancy  flux  increases  with  buoyancy  (height).    First,  the  magnitude  of  
the  buoyancy  flux  just  above  the  turbulent  boundary  layer,    B0 ,  can  be  an  increasing  function  of  
buoyancy,  and  second,  the  area  of  the  SML  can  increase  with  buoyancy.    Neither  of  these  ways  
of  achieving  the  increase  with  buoyancy  of  the  magnitude  of  the  area-­‐‑integrated  buoyancy  flux  
(i.e.    dF db > 0 )  were  considered  in  the  seminal  boundary  mixing  descriptions  of  Thorpe  (1987),  
Garrett  (1990,  1991,  2001)  or  Garrett  et  al  (1993)  except  perhaps  in  their  reference  to  the  “tertiary  
circulation”  of  Phillips  et  al.  (1986)  and  McDougall  (1989).    These  papers  considered  the  mixing  
activity  as  arising  right  at  the  solid  boundary  and  being  mostly  confined  to  the  BBL,  whereas  in  
this  study  (as  well  as  in  Klocker  and  McDougall  (2010),  de  Lavergne  et  al  (2016)  and  Ferrari  et  al  
(2016))  we  consider  the  diapycnal  mixing  activity  to  arise  in  the  stratified  ocean  above  the  BBL.      

Our  focus  is  on  the  mixing  in  the  stratified  ocean  interior,  and  this  focus  is  crucial.     Armi  
(1979)   and  Garrett   (1990)   both  made   the   point   that   if   near-­‐‑boundary  mixing  were   to  make   a  
significant   contribution,   then   it   would   need   to   occur   in   the   stratified   near-­‐‑boundary   region.    
This   is   exactly   the   SML   region   in   which   the   enhanced   diapycnal   mixing   above   rough  
topography  is  observed  to  occur.      

2.    Diapycnal  volume  transports  expressed  in  terms  of  the  turbulent  buoyancy  fluxes    

In   the   present  work  we   represent   the   boundary   region   in   a   particularly   simple  manner.     We  
allow  a  turbulent  boundary  layer  right  against  the  sloping  sea  floor  in  which  the  isopycnals  are  
assumed  to  be  normal  to  the  sea  floor,  and  at  the  top  of  this  turbulent  boundary  layer  we  have  
assumed  that  the  stratification  abruptly  changes  to  have  the  isopycnals  essentially  flat.      

The  vertical  profile  of  the  magnitude  of  the  diapycnal  buoyancy  flux   B   in  the  deep  ocean  is  
taken  to  be  zero  at  the  sea  floor  and  to  increase  with  height  in  the  BBL  to  a  maximum  value  of  

  B0   at  the  top  of  the  BBL  of  thickness    h ,  and  then  to  decrease  exponentially  with  height  (with  
scale  height   d )  in  the  SML  (see  Figure  1).    The  influence  of  the  geothermal  heat  flux  at  the  sea  
floor   is   secondary.      The   turbulent   buoyancy   flux   can   be   written   in   terms   of   the   turbulent  
diffusivity    D   acting  on   the  vertical  gradient  of  buoyancy    bz   as   the  down-­‐‑gradient   flux    −Dbz     
(and  note   that     bz = N 2 ).     We  choose   to   frame  the  discussion   in   terms  of   the  magnitude  of   the  
turbulent  buoyancy  flux  per  unit  area  which  we  give  the  symbol   B   so  that  in  the  ocean  interior  
we  have     B = Dbz .     Measurements  of  the  dissipation  of  turbulent  kinetic  energy  per  unit  mass,  
ε ,  are  often  used  to  estimate   B   as   B = Γε   where   Γ   is  the  mixing  efficiency  following  Osborn  
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(1980).      In   the   BBL   it   is   the   strong   variation   of   the   mixing   efficiency   Γ    with   height   that   is  
responsible  for  the  magnitude  of  the  buoyancy  flux  per  unit  area  going  from     B0   at   the  top  of  
the  boundary  layer  to  zero  at  the  sea  floor  (in  the  absence  of  the  geothermal  heat  flux).      

  

Figure  1.    In  the  deep  ocean  each  vertical  cast  is  assumed  to  have  the  magnitude  of  
the   diffusive   buoyancy   flux       B    start   at   zero   at   the   sea   floor   and   to   increase  with  
height  in  the  turbulent  bottom  boundary  layer  (BBL)  to  a  maximum  value  of    B0   at  
the  top  of  the  BBL  of  thickness    h ,  and  then  decrease  exponentially  towards  zero  as  

   
B0 exp − ′z d( )   where   ′z   is  the  height  above  the  top  of  the  turbulent  boundary  layer.      

We   examine   the   buoyancy   budget   for   the   volume   between   two   closely-­‐‑spaced   buoyancy  
surfaces    b    and    b+Δb ,   bounded   by   a   sloping   sea   floor   as   shown   in   Figure   2,   following   the  
approach   of   the   appendix   of   Klocker   and   McDougall   (2010)   and   the   volume-­‐‑integrated  
buoyancy  and  volume  conservation  approach  of  Walin  (1982).     We  ignore  several  subtleties  of  
the  equation  of  state  of  seawater  and  we  take  the  vertical  gradient  of  buoyancy   bz   to  be  equal  to  
the   square   of   the   buoyancy   frequency,   that   is,     N

2 = bz ,   and   we   use   subscripts   to   denote  
differentiation.      

  

Figure  2.    The  geometry  of  the  near-­‐‑boundary  mixing  region,  concentrating  on  the  volume  
between   two   closely-­‐‑spaced   buoyancy   surfaces.      The   turbulent   bottom   boundary   layer  
(BBL)  against  the  solid  boundary  has  thickness   h .    The  area  integral  of  the  diffusive  flux  of  
buoyancy,  whose  magnitude  is   F ,  is  directed  downwards  while  the  diapycnal  velocity   e   
and  the  diapycnal  volume  fluxes    ESML   and    EBBL   are  defined  positive  upwards.    Panel  (a)  
shows   the   fluxes   required   to   establish   the   buoyancy   budget   for   the   turbulent   bottom  
boundary   layer   (BBL)   while   panel   (b)   shows   the   corresponding   terms   needed   for   the  
buoyancy  budget  for  the  whole  shaded  near-­‐‑boundary  region  that  includes  the  BBL.      
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Because  the  mixing  intensity  decreases  smoothly   in  the  vertical,   the  shaded  control  volume  of  
Figure   2(b)   actually   extends   all   the  way   to   the   right   in   the   figure   even   though   the   shading   is  
shown  ending  where  the  mixing  intensity  becomes  sufficiently  small.     Along  the  upper    b+Δb   
surface   the   magnitude   of   the   diffusive   buoyancy   flux   is   the   maximum   value     B0    on   that  
buoyancy  surface  at  point  a  and  decreases  to  the  right,  that  is,  away  from  the  boundary  along  
the   buoyancy   surface.      Similarly,   along   the   lower   buoyancy   surface,   the   magnitude   of   the  
diffusive   buoyancy   flux   is   the  maximum   value     B0    on   that   buoyancy   surface   at   point   b   and  
decreases  to  the  right  (the  values  of    B0   at  points  a  and  b  may  be  different).      
   We  define  the  magnitude  of  the  diffusive  buoyancy  flux  across  the  whole  interior  area  
of  an  isopycnal  as    

   
F = B b,x, y( )dxdy∫∫ ,       (1)  

where  it  is  recognized  that  this  integral  only  needs  to  be  performed  along  the  “near-­‐‑boundary”  
stratified  mixing   layer   (SML)  where   the  dissipation   is  significantly  non-­‐‑zero.     That   is,  because  
 B   decreases  rapidly  with  height  it  also  decreases  very  strongly  with  horizontal  distance  from  
the  sloping  boundary   (to   the   right)   in  Figure  2(b).     The   integral   in  Eqn.   (1)   is  performed  on  a  
buoyancy  surface  so  that   F   is  a  function  only  of  buoyancy   b .    
   When  the  volume  and  buoyancy  budgets  of  the  shaded  fluid  of  Figures  2(a)  and  2(b)  are  
examined,  the  following  results  are  found  for  the  diapycnal  volume  transports  in  the  turbulent  
bottom  boundary  layer  (BBL),    EBBL ,  and  net  diapycnal  volume  transport,    Enet ,  being  the  sum  of  

  EBBL   and  the  diapycnal  volume  transport  across  the  buoyancy  surface  in  the  SML,    ESML ,    

    
EBBL =

G +B0

bz

1
tanθ

dc∫   ,   (2)  

and    

   
Enet ≡ EBBL + ESML = dF

db
+ G

bz

1
tanθ

dc∫   .   (3)  

The  difference  between  these  two  equations  gives  the  following  expression  for    ESML     

    
ESML = dF

db
−

B0

bz

1
tanθ

dc∫   .   (4)  

These   statements   for   the   various   diapycnal   volume   transports   apply   locally   to   an   area   of  
diapycnal  mixing  near  a  boundary,  and  they  apply  even  when  the  flow  is  not  in  a  steady  state  
and  also  when  the  near-­‐‑boundary  layer  region  receives  (or  exports)  volume  from/to  the  rest  of  
the  ocean.    That  is,  a  complete  integration  over  the  full  area  of  a  buoyancy  surface  is  not  needed  
to  obtain  these  results;  these  three  equations  are  applicable  to  a  local  area  of  mixing  and  also  to  
the  integral  over  a  complete  isopycnal,  and  they  apply  whether  the  ocean  is  stationary  or  non-­‐‑
stationary.      The   key   assumptions   we   have   made   are   that   (i)   the   amplitude   of   turbulent  
diapycnal   mixing   decreases   towards   zero   as   one   moves   sufficiently   far   from   the   sloping  
boundary,  and  (ii)   that  a  well-­‐‑mixed  turbulent  boundary   layer  exists  very  close  to   the  sloping  
solid  boundary.      

In   these   equations     dF db    is   the   rate   at   which   the   magnitude   of   the   isopycnally   area-­‐‑
integrated   turbulent   buoyancy   flux    F    varies   with   respect   to   the   buoyancy   label    b    of   the  
isopycnals,    G    and     B0    are   the   fluxes   of   buoyancy   into   the   turbulent   bottom   boundary   layer  
(BBL)   per   unit   of   exactly   horizontal   area   due   to   the   geothermal   heat   flux,    G ,   and   to   the  
diffusive  buoyancy  flux  at  the  top  of  the  BBL,     B0 ,  respectively,   θ   is  the  angle  that  the  bottom  
topography  makes  with   the   horizontal,   and     dc    is   the   element   of   spatial   integration   into   the  
page  of  Figure  2.      
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Eqn.   (2)   shows   that   the  sum  of   the  geothermal  heat   flux  per  unit  area  at   the  seafloor,    G ,  
and  the  magnitude  of  the  turbulent  buoyancy  flux  per  unit  area  at  the  top  of  the  BBL,    B0 ,  drive  
an  upwelling  volume  transport  along  the  BBL.    This  upwelling  transport,    EBBL ,  increases  as  the  
sea   floor   slope    tanθ    decreases,   and   it   increases   in   proportion   to   the   “circumference”   (or  
perimeter)   of   the   edge   of   the   isopycnal   where   it   intersects   the   ocean   boundary.      Eqn.   (3)  
confirms  that  the  net  diapycnal  upwelling  is  proportional  to  the  increase  with  buoyancy  of  the  
magnitude   of   the   area-­‐‑integrated   turbulent   buoyancy   flux,   plus   the   geothermal   contribution  
coming  into  the  BBL.    Coming  to  grips  with  Eqn.  (4)  for  the  diapycnal  sinking  in  the  SML  and  
its  relationship  to  the  BBL  and  net  transports  is  a  main  focus  of  this  work.      

3      Relating  the  interior  downwelling  volume  flux  to  the  area-­‐‑integrated  buoyancy  flux    
The  equation  for  the  dianeutral  velocity    e    in  the  stratified  interior  ocean  can  be  found  by  

taking   the   appropriate   linear   combination  of   the   conservation   equations   for  Absolute  Salinity  
and   Conservative   Temperature   (see  McDougall   (1984)   or   Eqn.   (A.22.4)   of   IOC   et   al.   (2010)).    
Ignoring  various  terms  that  arise  from  the  non-­‐‑linear  nature  of  the  equation  of  state  of  seawater,  
the  dianeutral  velocity  can  be  expressed  as  (subscripts  denote  differentiation)    

  ebz = Bz   ,                or              
   
e =

Bz

bz

= ∂B
∂b x,y

.   (6)  

As  explained  in  appendix  A.22  of  IOC  et  al.   (2010),   this  equation  is  the  evolution  equation  for  
the   locally-­‐‑referenced   potential   density;   it   is   also   the   classic   diapycnal   “advection-­‐‑diffusion”  
balance.      In  deriving  this  expression  the  curvature  of  the  buoyancy  surfaces  in  space  has  been  
neglected,  so  this  expression  is  accurate  when  the  buoyancy  surfaces  are  relatively  flat  such  as  
in  the  stratified  ocean  interior.    Note  that  this  expression  for  the  diapycnal  velocity  applies  even  
when  the  flow  is  unsteady,  and  it  applies  locally,  on  any  individual  water  column.    In  Eqn.  (6)  
both     Bz    and    bz    are   evaluated   on   a   vertical   cast   at   constant    x    and    y ,   so   that   the   diapycnal  
velocity   e   is  the  exactly  vertical  component  of  the  velocity  that  penetrates  through  the  (possibly  
moving)  buoyancy  surface.      

We  now   spatially   integrate   this   expression   for   the  dianeutral   velocity  over   the  buoyancy  
surface  in  the  stratified  mixing  layer  (SML),   that   is,  over  that  part  of  the  area  of  the  buoyancy  
surface   that   excludes   the   BBL,   to   evaluate   the   diapycnal   volume   flux     ESML    (defined   positive  
upwards,  so  that  in  the  SML  both   e   and    ESML   are  negative)  as    

    
ESML = edxdy∫∫ =

Bz b,x, y( )
bz

dxdy∫∫ .       (7)  

It  is  now  helpful  to  assume  that  the  vertical  shape  of  the  turbulent  buoyancy  flux  profile  is  
exponential  (see  Figure  1),  so  that  the  variation  of   B   along  the  area  of  the  buoyancy  surface   b   
in  the  stratified  ocean  interior  is  given  by    

   
B b,x, y( ) = B0 x, y( ) exp − ′z

d
⎛
⎝⎜

⎞
⎠⎟
,     (8)  

where  the  magnitude  of  the  diffusive  buoyancy  flux  at  the  top  of  the  BBL,    B0 ,  is  specified  as  a  
function   of   latitude   and   longitude,  

   
B0 x, y( ) ,   and    ′z    is   the   height   of   the    b    buoyancy   surface  

above  the  top  of  the  turbulent  bottom  boundary  layer  (BBL)  at  a  given  latitude  and  longitude.    
From  Eqns.  (6)  and  (8)  we  see  that  the  dianeutral  velocity  

   
e b,x, y( ) =Bz bz   on  buoyancy  surface  

 b   at  a  general  latitude  and  longitude  is    

   
e b,x, y( ) = −

B0 x, y( )
bz d

exp − ′z
d

⎛
⎝⎜

⎞
⎠⎟

= −
B b,x, y( )

bz d
  ,     (9)  



 

VIIIth Int. Symp. On Stratified Flows, San Diego, USA, Aug. 29 – Sept. 1, 2016 
 
 

6 

whose  integral  over  the  buoyancy  surface  in  the  stratified  mixing  layer  (SML)  is    

    
ESML = −

B b,x, y( )
bz d

dxdy∫∫ .       (10)  

In   the  absence  of  knowledge  of  any  spatial   correlation  between   the  variations  of  
   
B b,x, y( )   

and    bz d   along  the  buoyancy  surface  in  the  SML,  we  take  the  vertical  scale  height    d    to  be  the  
fixed  vertical  scale    d = 500m   and  we  approximate  the  right-­‐‑hand  side  of  Eqn.  (10)  as    

   
ESML ≈ − F

bz d
  ,   (11)  

where  
 

bz    is   the   average   value   of    bz    along   the   whole   area   of   the   buoyancy   surface  
(alternatively,   this  area  average  could  be  performed  only   in   the  SML).     This  approximation  to  
Eqn.   (10)   is   equivalent   to   ignoring   any   spatial   correlation   between   the   mixing   intensity  

   
B b,x, y( )    and   the   e-­‐‑folding   vertical   buoyancy   difference    Δb = bz d    over   the   SML   on   the  
buoyancy   surface.      If   such   a   correlation   exists   it   is   probably   in   the   sense   of   reducing   the  
magnitude  of  the  right-­‐‑hand  side  of  Eqn.  (11)  since  we  might  expect  that  the   largest  values  of  

   
B b,x, y( )    on   the   SML   would   occur   where   the   buoyancy   surface   is   shallowest   and    bz    is  
probably   also   the   largest.     We   note   in   passing   that   if  we  were   justified   in   assuming   that   the  
vertical   decrease   in   the   magnitude   of   the   buoyancy   flux   was   an   exponential   function   of  
buoyancy   (rather   than   of   height   as   in   Eqn.   (8)   above)   so   that  

   
B b,x, y( ) = B0 x, y( ) exp − b − b0( ) Δb( )   where  the  e-­‐‑folding  buoyancy  scale   Δb   is  constant  along  
the  buoyancy  surface,  then     ESML   would  be  given  by     ESML = − F Δb   so  that    ESML   and    F   would  
simply  be  proportional  to  each  other.    But  we  are  not  aware  of  any  observational  support  for  the  
e-­‐‑folding  buoyancy  scale   Δb   being  spatially  invariant,  so  we  follow  the  conventional  practice  of  
adopting  an  e-­‐‑folding  scale  in  height,  that  is,  we  retain  the  form  (8).      

This  rather  direct  relationship,  Eqn.  (11),  between  the  downwelling  volume  transport    ESML   in  
the  SML  and  the  magnitude  of  the  area-­‐‑integrated  interior  buoyancy  flux,    F ,  is  a  direct  result  
of  the  relationship  between  the  diapycnal  velocity  and  the  diffusive  buoyancy  flux  of  Eqns.  (6)  
and  (8),  namely    ebz = Bz = −B d .      

Just  like  our  expressions  Eqns.  (2)  and  (3)  for  the  net  diapycnal  volume  flux  in  the  BBL,  the  
net  diapycnal  volume  flux,  Eqn.  (11)  for  the  SML  near-­‐‑boundary  diapycnal  volume  flux  applies  
to  a  local  area  integral  along  a  buoyancy  surface,  and  it  applies  even  when  the  flow  is  unsteady  
and  also  when  there  is  a  mean  epineutral  transport  between  pairs  of  buoyancy  surfaces.      

4    Diapycnal  upwelling  in  the  BBL  as  a  vertical  integral  of  net  global  diapycnal  upwelling    

Recalling  that  we  are  ignoring  the  geothermal  heat  flux,  the  complete  buoyancy  budget,  Eqn.  
(3),     Enet = dF db ,  can  be  integrated  with  respect  to  buoyancy,    

   
F = Enetbmin

b

∫ d ′b   ,   (12)  

yielding  a  convenient  expression  for   the  area-­‐‑integrated  diffusive  buoyancy  budget    F ,  where  

  Enet = EBBL + ESML   is  the  net  diapycnal  upwelling  transport  through  both  the  BBL  and  the  SML,  
and  the  definite  integral  is  performed  from  the  very  densest  water  with  buoyancy    bmin .      

Substituting  this  expression  for   F   into  Eqn.  (11)  gives    

   
ESML ≈ − 1

bz d
Enetbmin

b

∫ d ′b   .   (13)  

The  lower  limit  of  the  integration  here  is  the  least  buoyant  (densest)  water  in  the  world  ocean  
where   F   (and  hence    ESML )  is  zero  since  the  area  of  this  densest  surface  tends  to  zero.      
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Equation  (13)  is  the  key  result  of  this  work;  it  states  that  knowledge  in  the  abyssal  ocean  of  
(i)  the  stratification   

bz ,  (ii)  the  vertical  e-­‐‑folding  length  scale  of  the  diffusive  buoyancy  flux   d ,  
and  (iii)  the  net  upwelling  of  AABW  as  a  function  of  buoyancy,  

   
Enet b( ) ,  yields  an  estimate  of  the  

sinking  diapycnal  volume  flux    ESML   in  the  ocean  interior.      
The  diapycnal  volume  flux  in  the  BBL  follows  from  Eqn.  (13)  and  the  volume  conservation  

equation,    Enet = EBBL + ESML ,  so  that    

   
EBBL ≈ Enet + 1

bz d
Enetbmin

b

∫ d ′b   .   (14)  

As   an   initial   demonstration   of   these   equations,   we   will   assume   that   the   net   upwelling  
volume  flux     Enet    is   independent  of  height   (buoyancy)   in   the  abyss,  and  define  buoyancy  with  
respect  to  a  Neutral  Density  value  of   28.3 kgm−3   as    

  
b / (ms−2 ) = 0.01 28.3 − γ / (kgm−3)( ) ,       (15)  

where   γ   is  Neutral  Density  (Jackett  and  McDougall,  1997).    We  will  assume  that  the  buoyancy  
value     bmin = 0 ms−2    characterizes   the  densest  water   in   the  world  ocean.     At  a  depth  of  2500  m  
ocean   atlases   show   that    γ ≈ 28.05 kgm−3 ,     b ≈ 2.5x10−3ms−2 ,     bz ≈ 10−6 s−2 ,   and   taking    d    to   be  

 500m ,  Eqns.  (13)  and  (14)  yield     ESML ≈ −5 Enet   and     EBBL ≈ 6Enet .     In  this  way,  if     Enet   were  say  
18  Sv  then  the  diapycnal  transport  in  the  BBL  would  be  about  108  Sv  while  the  downwelling  in  
the  interior  SML  would  be  90  Sv.      
   If   instead  of   assuming   that     Enet    is   independent   of  height   (buoyancy)   in   the   abyss,  we  
take   it   to   be   a   linearly   increasing   function  of   buoyancy   as   suggested  by   the  model   studies   of  
Ferrari  et  al  (2016),  then  the  above  ratio  of     ESML   to    Enet   becomes    ESML ≈ −2.5 Enet ,  closer  to  the  
values   of   approximately    −1.5    seen   in   Figure   7   of   Ferrari   et   al   (2016).      The   remaining  
discrepancy   could   be   due   to   the   model   runs   having   a   larger   stratification  

 
bz    than   the  

observations  or  due  to  the  correlation  along  isopycnals  in  the  SML  between  the  mixing  intensity  

   
B b,x, y( )    and   the   vertical   stratification    bz    in   Eqn.   (10).      The   ratio     

ESML Enet    in   Figure   9   of  
Ferrari  et  al   (2016)   is  based  on  applying   the  Nikurashin  and  Ferrari   (2013)  estimate  of  mixing  
induced   by   breaking   topographic   waves,   and   is   slightly   larger   at   about  

  
ESML Enet ≈ 2    (and  

hence    EBBL Enet ≈ 3)  in  the  abyss.      

5    Conclusions    
• The  upward  diapycnal  volume  transport  in  the  turbulent  bottom  boundary  layer  (BBL)  is  

typically  several  times  as  large  as  the  net  upwelling  of  AABW  in  the  abyss.      
• This  implies  that  there  is  substantial  cancellation  between  the  large  upwelling  in  the  BBL  

and  the  (almost  as  large)  downwelling  in  the  stratified  mixing  layer  (SML)  that  lies  in  the  
stratified  ocean  but  is  near  the  sea  floor  where  the  diapycnal  mixing  is  significant.      

• In   order   to   upwell    100 Sv    across   isopycnals   in   the   BBL,   the   turbulent   diffusivity  
immediately  above   the  BBL  must  be  approximately     D0 ≈ 5x10−3 m2 s−1    on  average  along  
the  incrop  line  of  a  buoyancy  surface.    Clearly,  this  is  a  large  diapycnal  diffusivity,  and  it  
remains  to  be  seen  if  this  will  prove  to  be  a  realistic  estimate.      

References    

Armi,  L.,  1979:  Reply  to  comment  by  C.  Garrett.    Journal  of  Geophysical  Research,  84,  5097-­‐‑5098.      

de  Lavergne,  C.,  G.  Madec,  J.  Le  Sommer,  G.  A.  J.  Nurser  and  A.  C.  Naveira  Garabato,  2016:  On  
the   consumption   of   Antarctic   Bottom   Water   in   the   abyssal   ocean.      Journal   of   Physical  
Oceanography,  in  press.      



 

VIIIth Int. Symp. On Stratified Flows, San Diego, USA, Aug. 29 – Sept. 1, 2016 
 
 

8 

Ferrari,  R.,  A.  Mashayek,  T.  J.  McDougall,  M.  Nikurashin  and  J-­‐‑M  Campin,  2016:  Turning  ocean  
mixing  upside  down.    Journal  of  Physical  Oceanography,  in  press      

Garrett,  C.,  1990:  The  role  of  secondary  circulation   in  boundary  mixing.      Journal  of  Geophysical  
Research,  95,  3181-­‐‑3188.      

Garrett,  C.  1991:  Marginal  mixing  theories.    Atmos.-­‐‑Ocean,  29,  313-­‐‑319.      

Garrett,  C.,  2001:  An  isopycnal  view  of  near-­‐‑boundary  mixing  and  associated  flows.    Journal  of  
Physical  Oceanography,  31,  138-­‐‑142.      

Garrett,  C.,   P.  MacCready   and  P.  Rhines,   1993:   Boundary  mixing   and   arrested  Ekman   layers:  
Rotating  stratified  flow  near  a  boundary.    Annual  Reviews  of  Fluid  Mechanics,  25,  291-­‐‑323.      

IOC,   SCOR   and   IAPSO,   2010:   The   international   thermodynamic   equation   of   seawater   –   2010:  
Calculation   and   use   of   thermodynamic   properties.      Intergovernmental   Oceanographic  
Commission,   Manuals   and   Guides   No.   56,   UNESCO   (English),   196   pp.      Available   from  
http://www.TEOS-­‐‑10.org        

Jackett,   D.   R.   and   T.   J.   McDougall,   1997:   A   neutral   density   variable   for   the   world’s   oceans.  
Journal  of  Physical  Oceanography,  27,  237-­‐‑263.  

Klocker,  A.   and  T.   J.  McDougall,   2010:   Influence   of   the  nonlinear   equation   of   state   on  global  
estimates   of   dianeutral   advection   and   diffusion.      Journal   of   Physical  Oceanography,   40,   1690–
1709.      

Kunze,  E.,  E.  Firing,  J.  M.  Hamilton  and  T.  K.  Chereskin,  2006:  Global  abyssal  mixing  iinferred  
from  lowered  ADCP  shear  and  CTD  strain  profiles.    Journal  of  Physical  Oceanography,  36,  1553–
1576.  

McDougall,   T.   J.,   1984:   The   relative   roles   of   diapycnal   and   isopycnal   mixing   on   subsurface  
water  mass  conversion.    Journal  of  Physical  Oceanography,  14,  1577-­‐‑1589.  

McDougall,  T.  J.,  1989:  Dianeutral  advection,  in  Parameterization  of  small-­‐‑scale  processes,  edited  by  
P.   Müller   and   D.   Henderson,   Proceedings   of   the   fifth   ’Aha   Huliko’a   Hawaiian   Winter  
Workshop,  University  of  Hawaii  at  Manoa,  289-­‐‑315.      

Nikurashin,  M,  and  R.  Ferrari,  2013:    Overturning  circulation  driven  by  breaking  internal  waves  
in  the  deep  ocean.    Geophysical  Research  Letters,  40  (12),  3133-­‐‑3137.  

Munk,  W.  H.  1966:  Abyssal  recipes.    Deep-­‐‑Sea  Res.,  13,  207-­‐‑230.      
Phillips,  O.  M.,  1970:  On  flows  induced  by  diffusion  in  a  stably  stratified  fluid.     Deep-­‐‑Sea  Res.,  
17,  435-­‐‑443.      

Phillips,  O.  M.,   J.-­‐‑H.   Shyu   and  H.   Salmun,   1986:  An   experiment   on   boundary  mixing:  Mean  
circulation  and  transport  rates.    J.  Fluid  Mech.,  173,  473-­‐‑499.      

Osborn,   T.   R.,   1980:   Estimates   of   the   local   rate   of   vertical   diffusion   from   dissipation  
measurements.    Journal  of  Physical  Oceanography,  10,  83-­‐‑89.      

St.   Laurent,   L.,   J.   M.   Toole   and   R.  W.   Schmitt,   2001:   Buoyancy   forcing   by   turbulence   above  
rough  topography  in  the  abyssal  Brazil  Basin.    J.  Phys.  Oceanogr.,  31,  3476-­‐‑3495.      

Thorpe,  S.  A.  1987:  Current  and  temperature  variability  on  the  continental  slope.    Philos.  Trans.  
Roy.  Soc.  London,  A323,  471-­‐‑517.      

Walin,  G.,   1982:  On   the   relation  between  sea-­‐‑surface  heat   flow  and   thermal   circulation   in   the  
ocean.    Tellus,  34,  187-­‐‑195.      

  
  


