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Abstract
Weakly nonlinear theory is used to explore the dynamics of a mode-1 internal tide in
variable stratification. Nonlinear refraction of the internal tide at the pycnocline gener-
ates a perturbation which is forced with double the original frequency and wavenumber.
The dynamics of the perturbation are analogous to a forced harmonic oscillator, with the
steady state solution matching the forcing frequency and wavenumber. The perturbation
exhibits resonance when its frequency is close to a natural frequency of the system. En-
hanced dissipation due to the harmonic occurs near resonance, and its contribution to
ocean tidal dissipation may be significant in some environments.

1 Introduction

Internal waves are ubiquitous in Earth’s oceans, and a broad spectrum of internal wave
frequencies and wavenumbers is observed [1, 2, 3]. Most of their power, about 1 terawatt
globally, is found in low-frequency, low mode (long wavelength) internal tides [4]. Their
dissipation contributes substantially to ocean mixing [5]. The geographic and vertical dis-
tribution of internal tide dissipation has a significant impact on the mixing and thermal
structure of the ocean, and incomplete understanding of dissipation contributes to errors
in climate prediction [6]. Multiple mechanisms have been proposed to explain the dissi-
pation of the internal tides. Among these are scattering to smaller scale internal waves
by topography [7, 8], interaction with mesoscale flow structures [9], shoaling on sloping
continental shelves [10], and parametric subharmonic instability [11, 12], although recent
observations suggest the latter is not relevant for mode-1 diurnal tides [13]. It is plausible
that no single dissipation mechanism is globally dominant, but instead that the relative
importance of different mechanisms varies geographically and seasonally.

There has been much recent progress in understanding the nonlinear mechanisms which
transfer internal wave energy to smaller scales. One prominent example is the excitation
of double-frequency and -wavenumber harmonics by refraction of a single mode. The
harmonic effect was first observed for internal wave beams propagating through sharply
increasing stratification by [14, 15] using numerical simulations, and quickly followed
in the laboratory [16, 17]. Additional numerical studies also observed the effect [18,
19]. Although the connection between harmonics and variable stratification was not
immediately recognized, the subsequent weakly nonlinear theory of [20] clearly derived
the connection between variable stratification and harmonic generation by a single mode.
For beams, the relative importance of nonlinear refraction of a single mode and wave-wave
interactions (which generally give rise to double-frequency, but not double-wavenumber
harmonics) was further investigated by [21, 22]. Initial transients produced by single mode
internal waves have recently been investigated by [23].

The generation of double-frequency harmonics by oceanic internal tides has also been
observed in the South China Sea by [24], who immediately recognized the connection

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 1



to the laboratory observations of [16]. The harmonic mode is transient, appearing and
disappearing from the observed currents over periods of several days. The subsequent
calculation of the expected steady-state harmonic amplitude by [25], using the weakly
nonlinear theory of [20], demonstrated that variable stratification was plausibly the cause
of the observed harmonic. The steady-state amplitude depends strongly on the pycno-
cline characteristics, suggesting that gradual changes in the stratification profile might
be responsible for the transient nature of the observations. Double-frequency harmonics
have also been observed in numerical simulations of internal tides by [7], who noted that
the harmonics only occurred when variable stratification was used.

2 Weakly nonlinear theory

Here, the weakly nonlinear theory of single-mode internal wave refraction developed in
[20, 22, 25] for steady-state harmonics is extended to include transients and dissipation.
The effect of rotation is neglected. The results are used to explore the possible role
nonlinear refraction might play in the dissipation of the oceanic internal tides. Utilizing
weakly nonlinear theory (rather than full numerical simulations) permits a much more
complete exploration of the parameter space. Using the theoretical framework for a two
dimensional Bousinesq fluid [26] [27] with buoyancy frequency N(z), the stream function
ψ(x, z, t) (u ≡ ∂zψ, w ≡ −∂xψ) is decomposed into a single primary mode ψo, with
frequency ω and horizontal wavenumber k, and a (smaller amplitude) perturbation δψ, as

ψ (x, z, t) = Aoψo (z) ei(kx−ωt) + δψ (x, z, t) + c.c (1)

where Ao represents the dimensionless amplitude of the primary mode and c.c denotes
complex conjugate (so that the solutions are real). The primary mode obeys the linear
equation [28]

∂2zψo + k2

((
N

ω

)2

− 1

)
ψo =

iν

ω

(
∂2z − k2

)2
ψo (2)

The perturbation, to lowest order, obeys

∂2t∇2δψ +N2∂2xδψ − ν∇4∂tδψ = −4k3

ω

(
∂zN

2
)
ψ2
oe

2i(kx−ωt) (3)

In uniform stratification N , there is no forcing for δψ and the primary mode is an exact
solution [27]. Equation (3) shows that internal wave refraction through any vertically-
varying stratification profile (non-zero ∂zN

2) generates harmonic modes, as first suggested
by [20]. Mathematically, Eq. (3) is analogous to a system of forced simple harmonic
oscillators, and its solutions can be written approximately in terms of eigenmodes ψn

with natural frequencies ωn as

δψ (x, z, t) = ψh(z)e2i(kx−ωt) +
∑
n

Anψn(z)ei(2kx−ωnt) (4)

where ψh represents the steady-state harmonic solution, which obeys the equation pre-
viously derived by [20] for ν = 0. The homogeneous (unforced) solutions of the same
equation are normalized to satisfy orthonormality and the constants An are chosen to
match the initial conditions. Like a forced harmonic oscillator, transient modes in Eq. 4
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gradually decay, ultimately leaving the steady-state solution δψ = ψh. The time required
for ψh to emerge depends on the proximity of the forcing to a homogeneous solution, often
referred to as the degree of resonance, along with the magnitude of the damping (ν) in
the system. Hence the relationship between the forcing frequency ω and the spectrum of
natural eigenfrequencies ωn(2k) at the harmonic wavenumber 2k is vital to understanding
the dynamics of the system.

With nonzero viscosity, the eigenmode expansion in Eq. 4 is only approximate. In
this analysis, viscous effects are assumed to be small and are only retained in the time
dependence of the modes, while inviscid spatial solutions represent the vertical structure.
With this approximation, the unforced terms in Eq. 4 decay, ultimately leaving the
steady-state solution with a frequency 2ω and wavenumber 2k.

3 Results

In general, numerical methods are needed to solve Equation (3) for an arbitrary strat-
ification profile N(z). To explore the solution characteristics analytically, an idealized
stratification profile with piecewise-constant N(z) is used here. This approach generalizes
the work of [28] to the weakly nonlinear regime, and was used previously to establish
the connection between variable stratification and harmonic generation for plane internal
waves [20, 21] and single-mode internal tides [25]. The stratification N(z) is constant
except for a thin pycnocline and mixed layer at the top:

N(z) =


0 −h+ δ < z < 0
Np −h < z < −h+ δ
No −H < z < −h

 (5)

The profile is representative of realistic ocean profiles for δ < h � H, but also reduces
to the “top-hat” profile (larger δ and Np � No) which has also been used to explore
harmonic generation [23]. Solutions of Eq. 2 for the primary mode ψo are found using
the boundary conditions ψ = 0 at z = [−H, 0] and matching conditions at the layer
boundaries, as in [28, 20, 25]. The result is

ψo = Ao


a sinh(kz) −h+ δ < z < 0

b sin(qpz) + c cos(qpz) −h < z < −h+ δ
d sin(q(H + z)) −H < z < −h

(6)

where Ao is the steady state amplitude of the mode and the constants a, b, c, d are deter-
mined by the matching conditions. The frequency ω is given by

ω

No

' ±k√
k2 + q2

− iν

2No

(
k2 + q2

)
(7)

where the imaginary term determines the viscous decay rate of the mode. For a non-zero
amplitude, the matching conditions require that q and qp satisfy the dispersion relation

qp tan(q(H − h)) = −q tan(qpδ + χ) (8)

qp = k

√(
Np

No

)2(
1 +

q2

k2

)
− 1 (9)

tanχ ≡ qp
k

tanh k (h− δ) (10)
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In the limit δ → 0, this reduces to the dispersion relation found in [22]. Equation (10)
is solved numerically to find the allowed values of q as a function of k. This yields a
spectrum of eigenmodes ψn, one of which is selected as the dominant mode ψo.

The orthonormal basis functions for the harmonic solution δψ are computed in the same
manner, except with double the wavenumber of the primary mode (k → 2k). The steady-
state harmonic solution ψs is found by substitution into Equation 3:

ψh = Ah


ah sinh(2kz) −h+ δ < z < 0

bh sin(2q′pz) + ch cos(2q′pz) −h < z < −h+ δ
dh sin(2q′(H + z)) −H < z < −h

(11)

q′2 = k2
(
N2

o

4ω2
− 1

)
, q′2p = k2

(
N2

p

4ω2 − 1
)

(12)

where k and ω are the wavenumber and frequency of the primary (forcing) mode. The
amplitude Ah is determined by the primary mode amplitude and is proportional to the
square of the primary mode amplitude, as is typical for weakly nonlinear phenomena.
The full expression for Ah is cumbersome and not very enlightening, and so is omitted
for brevity. Like the thin pycnocline limit (δ → 0) computed by [25], the denominator of
the expression contains the dispersion relation, and vanishes if the forcing frequency 2ω
lies near one of the natural modes ωn. This resonance criterion determines the conditions
under which a strong harmonic response to forcing by the primary mode is expected.

Figure 1 presents an example of the temporal development of the perturbation to a mode-
1 internal tide for conditions which are comparable to the South China Sea observations
of [24]. The water depth H is 2500 m, the pycnocline depth h is 75 m and its thickness δ is
25 m, and the dimensionless density change across the pycnocline [25] is g∆ρ/ρN2

oH = 2.
The dimensionless amplitude of the primary mode Ao = 0.005, which was selected to
yield horizontal currents of ∼ 0.3 m/s, as in [24]. The eddy diffusivity is ν ∼ 0.5 m2/s,
which is on the low end of estimates for the ocean [29]. Larger values of ν would more
rapidly damp out transients, causing the steady state solution to emerge more quickly.
The example shows the perturbation initially emerging near the pycnocline, as expected
since this is where the gradients in N(z) are found. After a few periods, it grows and
takes the form of the steady state mode, but does not reach full amplitude for tens of
periods, which is longer than the typical duration of the harmonic mode (∼ 10 periods)
observed in [24]. The emergence of the steady state harmonic mode is more rapid when
the system is near resonance, and very slow when far from resonance.

Of greater interest for oceanographic applications is the potential enhancement of the
dissipation rate ε in various environments due to nonlinear refraction. This is explored in
Figure 2 as a function of pycnocline depth h/H and the density change across the pycn-
ocline. Here, the pycnocline thickness is fixed at δ = 0.01H. The added dissipation due
to the harmonic εH is normalized by the dissipation rate of the primary mode, εH/A

2
oεo,

and is shown on a logarithmic (base 10) color scale. Due to the nonlinear nature of the
perturbation, it is also proportional to the primary mode amplitude A2

o, which is ∼ 3·10−5

for the South China Sea example. After only a few periods (left panel), there is a sub-
stantial increase in dissipation only in the vicinity of resonance (red curve). Substantially
enhanced dissipation covers a much broader part of parameter space in the steady state.
In the South China Sea example, the estimated value of εo due to the primary mode
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Figure 1: Growth of the harmonic mode horizontal current, after 1 − 30 periods of the primary mode.
Color bar is in m/s. Primary mode current is ∼ 0.3 m/s, and other parameters are representative of
South China Sea observations of [24].

Figure 2: The increase in dissipation rate log10(εH/A
2
oεo) due to nonlinear refraction, normalized by the

primary mode dissipation rate.
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would be ∼ 10−10 m2s−3, which is much less than the global average of ∼ 10−9 m2s−3

(1 Terrawatt divided by 1021 kg in the global oceans). In the example of Figure 2, for
A2

o ∼ 3 · 10−5, those regions with εH/A
2
oεo > 104 (green/yellow) have dissipation rates

which are significantly increased by the harmonic, and those with εH/A
2
oεo > 105 (red)

have dissipation rates which significantly exceed the global average. This example indi-
cates that, for realistic ocean conditions, nonlinear refraction could significantly increase
tidal dissipation in some environments, but that in many other cases the effect would be
negligible.

4 Discussion

These results illustrate the dynamics of nonlinear refraction for the generation of harmonic
perturbations to internal tides. Analogous to a forced harmonic oscillator, resonance
between the forcing frequency and the natural modes of the system is critical to the
dynamics. Near-resonant systems exhibit a strong response, and the steady state solution
emerges relatively rapidly. Non-resonant systems have a weaker response and are slower
to reach the steady state. The approach captures the essence of the dynamics reported
for the fully nonlinear simulations reported by [23], which finds rapid emergence of the
steady state for ocean-like stratifications (near resonance) but not for “top-hat” profiles
(non-resonant).

Weakly nonlinear theory with an idealized ocean stratification profile has been used here
to estimate the possible contribution of nonlinear refraction to the dissipation in oceanic
internal tides. The results show that, in near-resonant conditions, significant enhancement
of dissipation may occur, but that in non-resonant conditions the effect is not important.
Geographic and seasonal variations in dissipation would therefore be expected. Changing
conditions could cause harmonics to grow and decay, as in the observations of [24].

In future work, rotation must be added to the analysis to accurately represent ocean
conditions at higher latitudes. It should also be straightforward to extend the approach
to arbitrary stratification profiles by computing eigenmodes numerically. This would
permit calculation of resonance conditions and the likelihood of observing strong nonlinear
refraction for real ocean stratification profiles. Such results could guide future observations
as well as assess the possible contribution of nonlinear refraction to the global dissipation
of internal tides.
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