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Abstract

Doubly diffusive processes play a fundamental role in many physical phenomena of
substantial geophysical and astrophysical importance. Despite much research basic ques-
tions, e.g. how primary and secondary instabilities saturate and how mean fields are
generated, remain unresolved. In the salt-finger regime, we use a systematic asymptotic
procedure to reduce the primitive equations to a prognostic equation for the evolution of
the salinity field coupled to a novel diagnostic relation between the salinity and stream-
function. The reduced model preserves both the linear and nonlinear properties of the
original system including primary and secondary instabilities and the establishment of
a statistically steady saturated state. We identify the flux spectrum as a good diagnos-
tic for the presence of salt fingers: in the horizontal spectrum, we find two distinctive
scaling laws whose ranges are separated by the optimal wavenumber, while a Gaussian
distribution is discovered for the vertical spectrum.

1 Introduction

Doubly diffusive systems in which two components with different diffusivities contribute to
buoyancy in opposite ways arise frequently in geophysics and astrophysics (Turner, 1974;
Schmitt, 1994). For example, doubly diffusive mixing is triggered in the ocean whenever a
destabilizing slower diffuser (salinity) competes with a stabilizing faster diffuser (temper-
ature). In giant planets as well as in massive stars, an unstable fast diffuser (temperature)
and stable slow diffuser (composition) are responsible for important mixing processes. In
this paper we concentrate on the former case. This case leads to salt-fingering convection.

Linear stability properties of the salt-finger regime were first determined by Stern
(1960). As the magnitude of the unstable mode grows secondary instabilities are triggered
(Holyer, 1984), and finally lead to a statistically steady state (Shen, 1995; Radko, 2010).
However, the physical processes behind the presence of such an equilibrium state are
still incompletely understood. Stern (1969) has suggested that a collective instability
can lead to the disruption of the salt-finger field and lead to saturation, and identified
a dimensionless quantity, now called the Stern number, that can be used as a criterion
for saturation. Others have supposed that saturation will arise once the growth rate of a
secondary instability, such as those identified by Holyer (1984), becomes comparable to
that of the salt-finger instability (Radko and Smith, 2012).

Except for weakly nonlinear approaches, eg., Proctor and Holyer (1986); Radko (2010),
most researches employ numerical studies of the full system. Such studies, particular in
three dimensions, have proved invaluable and identified a number of novel processes, eg.,
Traxler et al. (2011). To shed light on some of these we propose here a semi-analytic
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procedure that leads to a simplified set of equations that are easier to study, both the-
oretically and numerically. In the following we refer to these equations as the reduced
equations, cf. Julien and Knobloch (2007). The procedure described below focuses on
the double limit of a large density ratio and a small diffusivity ratio and leads to a re-
duced model with a prognostic-diagnostic form. To demonstrate the procedure we limit
ourselves to two spatial dimensions. We present our derivation in §2, discuss secondary
instabilities and the properties of the saturated state within the reduced system in §3 and
§4, followed by conclusions in §5.

2 Model derivation

We start from the dimensionless equations describing warm salty fluid overlying cool fresh
fluid in two dimensions:
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Here ψ is the streamfunction such that u = ∇⊥ψ, T is the temperature field, S is the
salinity field, Pr is the Prandtl number, Rρ is the density ratio and τ is the ratio of the dif-
fusivities of salinity and temperature. The symbol J (a, b) denotes axbz−azbx with x and
z the horizontal and vertical directions, respectively. These equations have been nondi-
mensionalized using the natural salt-finger scale (Radko, 2010). As a result the parameter
regime of interest is Rρ > 1 and τ < 1 so that the system is convectively stable but unsta-
ble due to the different diffusivities of the competing fields. The trivial (conduction) state
of this system is linearly unstable when 1 < Rρ < τ−1. The system also possesses a family
of exact elevator-mode solutions in the form of (ψ, T, S) = <

{
(ψe, Te, Se)e

ikx
}

. These
solutions are independent of the vertical coordinate z and are present for any amplitude,
i.e., no nonlinear saturation of these states takes place.

In the following we focus on the small diffusivity ratio limit of this system by in-
troducing a small parameter ε � 1 such that τ = ετ̃ with τ̃ = O(1). In the context
of thermohaline problem this limit is physically sound since τ ≈ 0.01. Next, we take
Rρ = ε−1R̃ρ, meaning that the stabilizing temperature gradient is much stronger than the
destabilizing salinity gradient. This is an interesting regime to consider since the desta-
bilizing effect of the salinity stratification is pushed beyond the leading order, leading to
important simplification. In addition, we introduce the following scaling of the dependent
fields

ψ = εψ̃, T = εT̃ , S = εS̃ (2)

and focus on the low Prandtl number limit Pr = εP̃r.
In terms of the slow time t̃ ≡ εt these assumptions yield the following leading order

equations
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where for simplicity we omitted the ·̃ decoration. Note that the leading order T equation
degenerates to a constraint, ψx = ∇2T , which is applied to eliminate T from Eqs. (3).
Note that by rescaling and changing the variable S to −θ Eqs. (3) can be written as a
Rayleigh-Bénard convection (RBC) system with additional vorticity dissipation given by
∆−1∂2xψ. Since this new dissipation is stronger for larger scale structures, with suitable
boundary condition the optimal mode that has the largest growth rate has a finite char-
acteristic scale in the horizontal, in contrast to RBC where the scale of the optimal mode
depends on the domain size. Thus the temperature field is responsible for the introduction
of large-scale damping.

A further reduction is achieved by taking the scaled Prandtl number to be large and
normalizing ψ, S and ∂t by τ , resulting in the prognostic-diagnostic model

∂

∂t
S + J (ψ, S) + Ra

∂ψ

∂x
= ∇2S,

(
∇6 + ∂2x

)
ψ = ∂x∇2S, (4)

where Ra = 1/(Rρτ). Evidently the dynamics of this model only depend on the single
physical parameter Ra and the domain size. The prognostic form of this model is interest-
ing in the geophysical flow context, where β-plane vorticity dynamics, Bénard convection
in the large Prandtl number limit and β-convection all share the same form.

Together with the diagnostic relation we can interpret the physics of the linear insta-
bility as follows. The diagnostic relation requires that the ψ and S fields are out-of-phase
implying that the local maximum (minimum) of the perturbation of S tends to increase
(decrease) as time increases. The competition between this amplifying mechanism and
dissipation determines stability and results in the criterion Ra > 1 for instability, an
identical condition to that for the original system (1).

It is easy to check that the elevator modes remain solutions of the reduced model,
including that with the optimum wavenumber

k4opt =
1

2

(
−2− Ra +

√
Ra2 + 8Ra

)
and m = 0. (5)

However, the utility of the reduced system (4) extends beyond linear stability properties
since it also captures the nonlinear effects arising from advection, a process that is crucial
for the saturation of the growing salt fingers.

Our reduced model (4) turns out to be similar to the weakly nonlinear model derived by
Radko (2010) (see Eqs. (8) and (11) of Radko (2010)). Even though different parameter
regimes are considered in the two models – our reduced model captures the regime where
linear dynamics is not confined to the onset of instability (Ra ranges from 1 to ∞) in
the limit of small τ , while the Radko (2010) model relaxes the small τ assumption but is
restricted to dynamics near the onset – the two models match in the overlapping regime
τ � 1 and Ra = 1 + εR with ε� 1 and R = O(1). In this regime, the optimal scale from
Eq. (5) is O(ε−1/4) suggesting the rescaling

∂t → ε9/4∂t, ∇ → ε1/4∇, ψ → εψ and S → ε3/4S. (6)

With this rescaling the leading order contribution to (4) reads

∂tS + J
(
∇2

∂x
S, S

)
+

(
R− ∇

6

∂2x

)
∇2S = 0, (7)

which is identical to the Radko (2010) model in the limit of small τ .
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3 Secondary instabilities

Following Holyer (1984), we analyze the secondary instability of steady salt fingers by
means of single vertical mode Floquet theory and compare the growth rate calculated
from our reduced models (4) and (3) with that computed from the original system (1).
Floquet theory considers perturbations of the form(

ψ
S

)
= eαt+ik(px+qz)

n=N∑
n=−N

(
ψn
iSn

)
einkx. (8)

For the reduced model (4), we take Ra = 1.1 and assume that the salt finger field has
amplitude Se = 6.5 as obtained from Fig. 1(d) and is stationary. For the modified RBC
system (3), the parameters are chosen to be τ = 1, 1/Rρ = 1.1 and Pr = 104, and
Se = 6.5 as well. The results obtained are compared with the corresponding results for
the primitive system (1) with τ = 0.01, 1/Rρ = 0.011 and Pr = 1, and correspondingly
Se = 0.065. We show a contour plot of the growth rate α as a function of p and q in Fig.
1. The observed match between the first three panels demonstrates that the validity of
the reduced models extends far into the nonlinear regime. In the last panel we show the
salinity field obtained from a simulation of the reduced model (4) with an initial condition
that is a combination of the optimal mode and superposed small random noise. The
figure shows that at t = 180 the secondary instability sets in with a vertical wavenumber
comparable to that of the optimal mode, an observation that is well explained by the
single vertical mode Floquet theory which predicts that the largest growth rate occurs for
p = 0 and q = 1.05 obtained from Floquet theory with Se = 6.5. These results should
be compared with those of Stern and Simeonov (2005) for Pr = 7, Rρ = 2 and τ = 1/24,
for which the secondary instability sets in with vertical wavenumber of 0.8 times optimal
wavenumber. Both results confirm the validity of the single vertical mode Floquet theory
in triggering the secondary instability.
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Figure 1: Contours of constant growth rate α in the (p, q) plane for (a) the reduced model (4), (b)
the modified RBC equations (3) and (c) the primitive system (1). (d) The salinity field in the early
stage (t = 180) of the secondary instability in a 2× 5 domain in units of the optimal mode wavelength.
Wavenumbers are normalized by the optimal wavenumber given by (5).

4 Saturated state

In this section we describe the results of simulations for Ra = 1.1 in a doubly periodic
domain with different domain sizes. For this value of Ra, the large optimal scale distin-
guishes our reduced model from Bénard convection in the large Prandtl number limit.
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In particular, our reduced model (4) differs from (7) when anisotropic structures with
horizontal scales much larger than the vertical scale are considered.

In Fig. 2, we show the dynamics in a domain of size 1 × 2 in units of the optimal
wavelength, defined as 2π/kopt, obtained from an initial condition in which S takes the
form of a random field with zero x average. Panel (a) shows that the total energy ES =
(1/2)

∫
S2dxdz reaches a steady state. Properties of this state are shown in panels (b)

and (c) in terms of salinity field at large times and the corresponding horizontal mean
flow, respectively. These results are characteristic of small domain dynamics.
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Figure 2: Results from a small-domain simulation. (a) Evolution of the total energy with time. (b)
Large-time salinity field. (c) Associated horizontal mean flow with z now plotted along the horizontal
axis. Distances are measured in units of the wavelength of the optimal mode.

With increasing domain size the system exhibits irregular bursts, much as observed in
Traxler et al. (2011) (not shown). When the domain becomes even larger, a statistically
steady state is reached. To illustrate this result we show in Fig. 3 the results obtained
in a domain of size 32 × 32 in units of the optimal wavelength starting from an initial
condition in the form of a constant amplitude salt finger field with a small amplitude
random field superposed. We ran the simulation to t = 4800 and observed (Fig. 3(a))
that a statistically steady state is reached.

Three stages toward saturation can be identified: (i) Dominance of salt fingers. This
is the stage corresponding to peak energy and flux generation. Fig. 3(b) shows the
salinity field in the vicinity of this peak (t ≈ 180); long finger structures are observed. (ii)
Secondary instabilities. The salt fingers cannot grow without bound owing to the onset
of secondary instability, whose growth rate increases with the amplitude of the growing of
salt-finger as discussed in detail in the previous section. (iii) In the final saturation stage
no balance between the growth rate of a particular secondary instability and the growth
rate of the salt fingers has been identified. This regime is characterized by collisions of
upward and downward fingers Shen (1995) and it appears that it is a combination of these
two effects – secondary instability and salt finger collision – that is responsible for the
observed statistically steady saturated state. Fig. 3(c) provides a snapshot of the final
statistically steady salinity field. Finger-like structures can still be recognized but these
are of small spatial extent and quite different from stage (i).

We pay special attention to the statistically steady state. In Fig. 4(a) we show the
spectral energy input defined as λ(k,m)|Ŝ| with λ the growth rate and ·̂ denoting the
Fourier transform. This quantity is derived from the energy budget, viz. dES/dt =∫
λ(k,m)|Ŝ|dkdm. The figure shows that the energy input concentrates around the opti-
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Figure 3: Results from a large-domain simulation. (a) Evolution of the total energy (main panel) and
salinity flux (inset) with time. (b) The finger-dominanted state at t = 138. (c) The instantaneous
statistically steady state at t = 4800. Distances are measured in units of the wavelength of the optimal
mode.
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Figure 4: Spectral analysis of time-averaged saturate state (averaged over t ∈ (3600, 6000)). (a) The
energy input at scales (k,m). (b,c) One-dimensional salinity flux spectra obtained by integrating the
two-dimensional salinity flux spectrum F̂S(k,m) over m and k, respectively; the insets show log(F̂S(k)) vs
log(k) and log(log(max{F̂S(m)}/F̂S(m))) vs log(k) to identify the power laws and Gaussian distribution.
Here, due to symmetry only positive wavenumbers are presented.

mal horizontal wavenumber while dissipation involves both the resulting horizontal mean
flow and small-scale structures.

In Fig. 4(b,c), we examine the flux spectrum defined as F̂S = ψ̂xŜ
∗ + ψ̂x

∗
Ŝ with

∗ denoting the complex conjugate. It is important to note that this quantity captures
the net salinity flux across the full domain; it plays a role similar to that of the energy
spectrum. When integrated over the vertical wavenumber m, the horizontal flux spectrum
F̂S(k) exhibits a peak around the optimal wavenumber, indicating that finger structures
dominate the salinity flux; the behavior of the salinity flux can thus be used to identify
the salt-finger regime. Different k dependence is observed on either side of k = ±kopt
(owing to normalization kopt = 1): when k < kopt we observe a k2 scaling while a k−14

scaling is observed for k > kopt (see Fig. 4(b,c), insets). When integrated over k, the

vertical flux spectrum F̂S(m) has a Gaussian distribution instead, with zero mean and
variance ≈ 0.5, implying that the characteristic vertical salt-finger scale is twice of the
optimal wavelength.
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5 Conclusion

In this paper, we derived two reduced models, Eqs. (3) and (4), that describe salt-finger
convection in the limit of small diffusivity ratio and large flux ratio. The reduced model (4)
has a prognostic-diagnostic form and provides a concise understanding not only of linear
instability, but of the role of the temperature in generating large-scale damping and the
resulting energy budget as well. We provided detailed results for Ra = 1.1 and different
domain sizes and confirmed that our reduced model captures both linear and nonlinear
properties of the primitive equations, including both the linear stability conditions, the
conditions for secondary instability and the subsequent saturation. In large domains we
identified the salinity flux spectrum as a good diagnostic for salt-finger convection: the
horizontal flux spectrum exhibits power-law dependence on either side of the optimal
wavenumber while the vertical flux spectrum has a Gaussian distribution with zero mean.
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