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Abstract

The stability of isolated and interacting internal gravity wave beams to three-dimensional
perturbations is studied, based on the beam—mean-flow interaction equations derived in
Kataoka and Akylas (2015). These two-dimensional states are found to be unstable as a
result of modulational instability, a purely inviscid mechanism, as well as due to a
streaming effect brought about by viscous attenuation along the beam propagation

direction.

1 Introduction

Internal gravity wave beams (IGWB) are time-harmonic plane waves with general spatial
profile. Such disturbances are manifestations of the anisotropy of internal wave motion in
fluids with continuous vertical stratification, and may be regarded as the analogues of
cylindrical wavefronts in isotropic media. IGWB are of considerable geophysical interest,
as they form the backbone of the internal tide in oceans and can also arise in the
atmosphere due to thunderstorms.

Most prior studies of IGWB have focused on two-dimensional (2D) disturbances in an
inviscid Boussinesq fluid with constant buoyancy frequency. Under these flow conditions,
isolated uniform IGWB happen to be exact nonlinear states irrespective of the beam
profile (Tabaei and Akylas 2003), and significant nonlinear interactions may occur in
connection with reflections at boundaries and possibly due to collisions of beams (Tabaei
et al. 2005). However, the three-dimensional (3D) propagation of IGWB differs
fundamentally from its 2D counterpart: 3D variations enable resonant transfer of energy,
through the action of Reynolds stresses, to the flow mean vertical vorticity, resulting in
strong nonlinear coupling between an IGWB and its induced mean flow. This 3D
interaction mechanism is governed asymptotically by two coupled nonlinear amplitude
equations (Kataoka and Akylas 2015, hereinafter referred to as KA), which account for the
observed strong horizontal mean flow accompanying a forced 3D IGWB in laboratory

experiments (Bordes et al. 2012). According to this theoretical model, the mean flow
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arises from two distinct effects: (i) the presence of 3D beam variations, much as the mean
flow induced by a nonlinear modulated wavepacket, where viscous dissipation plays no
role (Tabaei and Akylas 2007); and (i1) viscous attenuation along the beam propagation
direction, similar to the acoustic streaming due to dissipating wavetrains (Lighthill 1978).
Here, we use the beam—mean-flow interaction model derived in KA to examine the
stability of IGWB to 3D perturbations. This also makes it possible to explore the role of

the two mean-flow generation mechanisms identified above in causing instability.

2 Theoretical Model

The asymptotic model of KA applies to small-amplitude thin beams with large-scale
along-beam and transverse variations. Briefly, assuming that nonlinear, dispersive and
viscous damping effects are weak and equally important, the beam—mean-flow interaction
equations (in normalized form such that the dependence on the beam inclination to the

horizontal is scaled out) are

U, +VU, +iU”den'+j"j”'UZZdn”dn’)—ﬁUw =0, (1)
817 . a 0 1 % %
i Uw{E(U U,), +ﬂU,7UW} dn} . @)

Here, U(X,n,Z,T) isthe complex amplitude of the beam velocity component in the

along-beam (X -) direction, ¥ (X,Z,T) is the induced mean-flow component in the
across-beam (77 -) direction, Z is the transverse horizontal coordinate and 7 is the slow

(relative to the beam period) evolution time. Also, 7 stands for the Hilbert transform in

Z , * denotes complex conjugate and the parameter £ controls viscous dissipation.

Equations (1), (2) form a closed system for U and 7 , to be solved subject to the

boundary conditions
n ’7' 14 !

['['Udn'dn >0 (> +0), 3)
which ensure that the beam velocity field remains locally confined in the beam vicinity,
77 = O(1). On the other hand, 7, which is uniform in 7, must be matched to a far-field
(|77| >>1) mean-flow solution, that ultimately decays away from the beam. Detailed

derivation of (1)—(3) and this matching procedure are presented in KA.

It should be noted that transverse ( Z -) beam variations are key to the nonlinear coupling

VIII™ Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 2



of U and ¥V in (1), (2). Moreover, the two terms on the right-hand side of (2) represent,
respectively, the modulation and viscous streaming mechanisms of mean-flow generation,
noted in §1. In the following, we discuss how each of these mechanisms may instigate 3D

instability of IGWB.

3 Modulational Instability
Throughout this section we focus on the inviscid limit ( # =0), where from (2)
i 0

74 :Ea—ZHUZU*UUdn] (4)

The induced mean flow is thus ‘slaved’ to the beam amplitude evolution, which is

governed by (1) with 7 given by (4). A particular 2D solution of this reduced system is
U=U,=Fn)+Gn+bX)e™", V=0. (5)

This represents the superposition of two nearly parallel free uniform beams with profiles

F, G and slightly different frequencies, controlled by the choice of the constant 5.

We wish to examine the stability of the 2D state (5) to infinitesimal 3D perturbations.

Since U, isindependent of Z and periodicin 7, by Floquet theory, the perturbed state

is taken in the form

U= UB + z {un (X, U)ei(izZ—(aHnb)T) + u: (X, n)e—i(er—(a)*Jrnb)T)}’ (6a)

n=—0

V= i{v (X)e# @) o o . (6b)

Upon substituting (6) in (1), (4) and linearizing with respect to the perturbation, we obtain

an eigenvalue problem (EVP) for u,, u, and v, (—wo<n<w),with o=0, +io,

being the eigenvalue. This EVP can be greatly simplified by introducing the Fourier

transformin X and 7,
w,(X,m) o u, kD), w(X,n)eu kD), v,(X)ev, (k). (7
Then, it is possible to eliminate u#, and u, and finally obtain the following EVP for v,

(—oo<n<oo)alone:

H(@+nb,k)¥,(k)= [ [J(@+nb,k,1)3, ,(k—Ib) + K (+ nb, k. D)7,

n+l

(k+1p)|dI, (8)

where
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It should be noted that the right-hand side of (8) vanishes when the two beams propagate

b

1 o
lok)y=>—-[

J(o,k,l) = 9)

in opposite directions because the beam profiles F', G involve only wavenumbers of
opposite signs (Tabaei et al. 2005), so ﬁ*(l)(N?(l) = I?(Z)CN?*(Z) =0. The eigenvalue

condition in this instance then reduces to

I(w,x)=0, (10)
for given k =x.Moreover,
_ [Vék—x) (n=0)
v"(k)_{ 0 (n#0). (1

Thus, the eigenvalues @, determined by (10), as well as the eigenmode v, in (11) are
independent of the parameter b, and hence the difference in inclination to the horizontal
of the two beams. Although at first sight this may seem counterintuitive, we recall that the
induced mean flow, which is responsible for an instability, extends far from the vicinity of
the beams.

When the two beams propagate in the same direction, the right-hand side of (8) does not
vanish and the solution of the EVP is more complicated. However, in the simplest case of

two parallel beams (b = 0), the eigenmode Vv, is still given by (11) and the eigenvalue

condition takes the form
I(@,x)= jw [J(w, 1)+ K(w,,1)]dI. (12)

The EVP solution for 5= 0 will be discussed elsewhere.

First, we report results on the stability of two interacting beams propagating in opposite
directions, where there is no dependence on b. We specifically consider two identical
Gaussian beams:

F=Usm), G =Us(m), (13)

where
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Us(n)= \/_J. 1lexp{—l—+1h]]dl (14)

with U, being a parameter that controls the beam peak amplitude. The eigenvalues

® = o, +1w, were computed numerically from (10), with @, >0 implying instability.
The growth rates @, versus x are plotted in figure 1. Only results of the greatest
growth rate @, , corresponding to the most unstable mode, for given U, and x are

presented.
Next, we show results on the stability of two parallel (b =0) beams propagating in the
same direction. Specifically, we consider two identical Gaussian beams separated by a
distance D:

F)=Usn-D/2), G =Ugsn+D/2). (15)
The eigenvalues @ =, +1w, were computed numerically from (12), and the growth

rates @, versus k are plotted in figure 2 for D =2, 4 and 10. As expected, both for

beams propagating in the same and opposite directions, the predicted instability becomes
stronger as the beam amplitude is increased. Also, for parallel beams propagating in the
same direction, instability arises for D larger than about 1.5 and the maximum growth
rate is reached when D =4. On the other hand, surprisingly enough, neither » nor D
affects the stability of two counterpropagating beams.

We also studied the transient development of forced beams by solving numerically (1) and

(4), with the addition of the following forcing terms on the right-hand side of (1):

ij” {F(?]') + G(?]')} dn'6(X) for 2D calculation, (16)

i j "IF()+ G dn S(X)(1+0.03coszZ)  for 3D calculation. (17)

The results of our simulations are summarized in figure 3. From the results in figures 1

and 2, two parallel beams of amplitude U, =2 separated by a distance D=4 are

expected to be unstable to 3D perturbations, and this is clearly confirmed in figure 3(b, c).
It should be noted that the instability is brought about solely by the beam interaction, as a
single forced beam, in the presence of the same 3D perturbation, propagates stably (figure
3a). Moreover, the result of this 3D instability is quite dramatic as it destroys the identity

of the interacting beams.
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Figure 1: Computed growth rates @, versus x for two beams propagating in opposite directions. The

beam peak amplitudes are chosen to be Uy = 0.5, 1, and 2. Here, the stability results are independent of the
inclination parameter b, as well as the separation distance D if the two beams are parallel (b = 0).
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Figure 2: Computed growth rates @, versus x for two parallel (b = 0) beams separated by a distance D
and propagating in the same direction: (a) D = 2, (b) D =4, (c¢) D = 10. The beam peak amplitudes are
chosentobe U, =0.51and2.
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Figure 3: Vertical flow slice at Z = 0 of beam amplitude U (only the real part is shown) for (a) single
propagating beam (at time 7'= 7), (b) two parallel beams (D = 4) propagating in opposite directions (at time
T'=2), (c) two parallel beams (D = 4) propagating in the same direction (at time 7 = 7). In all cases the beam
peak amplitude Up= 2. The top and bottom figures are, respectively, 2D calculation with the forcing term
(16) and 3D calculation with the forcing term (17). Viscous effects are ignored (4= 0).
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Figure 4: Vertical flow slice at Z = 0 of beam amplitude U (only the real part is shown) for viscous parameter
P =0.1 and (a) single propagating beam (at time 7'= 7), (b) two parallel beams (D = 4) propagating in
opposite directions (at time 7 = 4), (c¢) two parallel beams (D = 4) propagating in the same direction (at time
T=17). In all cases the beam peak amplitude Uy = 2. The top and bottom figures are, respectively, 2D
calculation with the forcing term (16) and 3D calculation with the forcing term (17).

4 Effects of Streaming

The effects of viscosity on the transient behavior of forced beams were explored by
solving numerically (1) (with the addition of the forcing terms (16) or (17)) and (2), for
three different values of the parameter £ =0.01, 0.1 and 1. It turns out that the effects of
viscous streaming — represented by the second term on the right-hand side of (2) — are
most dramatic for the moderately viscous case S =0.1. The corresponding simulation
results are shown in figure 4. It is seen that viscous streaming leads to significant

distortion even for a single propagating beam which is stable in the inviscid limit (figure

3a).

5 Conclusion

The preceding analysis has shown that, depending on the beam profile and amplitude, a
single isolated uniform IGWB as well as two interacting uniform IGWB which propagate
in the same or opposite directions, can be subject to 3D modulational instability brought
about by a purely inviscid nonlinear mechanism. Moreover, for moderate viscous
dissipation, the mean flow induced by a mechanism analogous to acoustic streaming can
cause significant distortion, leading to breakdown, of forced IGWB with small lateral

amplitude variations. These findings suggest that modulational and streaming instabilities
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are central to 3D IGWB dynamics, in constrast to the widely-studied PSI of sinusoidal
wavetrains (Staquet and Sommeria 2002), which is most relevant to beams with nearly

monochromatic profile only (Karimi and Akylas 2014).
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