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Abstract

Stratified shear flows, where the ‘background’ velocity and density distribution vary
over some characteristic length scales, are ubiquitous in the atmosphere and the ocean.
At sufficiently high Reynolds number, such flows are commonly believed to play a key
role in the transition to turbulence, and hence to be central to irreversible mixing of the
density field. Here, we review some of the recent progress in developing understanding
of instability, transition, turbulence and mixing in stratified shear flows. In particular,
we highlight certain non-intuitive aspects of the subtle interplay between the ostensibly
stabilizing effect of stratification and destabilizing effect of velocity shear, especially when
the density distribution has layers, i.e. relatively deep and well-mixed regions separated
by relatively thin ‘interfaces’ of substantially enhanced density gradient.

1 Introduction

Stratified turbulent mixing is a key process in geophysically important flows in the atmo-
sphere and ocean. Stratified mixing is enhanced by the presence of turbulent disordered
motion, but understanding and modelling such turbulence has proved to be profoundly
difficult. Indeed, the ‘simpler’ problem of turbulence in fluids of constant density may
legitimately be described as the great unsolved problem in classical physics. For example,
the classical ‘inertial scaling’ of the turbulent dissipation rate ε, defined as

ε = 2ν
〈
s′ijs

′
ij

〉
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(
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)
;u = 〈u〉+ u′, (1)

is that ε ∼ U3/L, where ν is the kinematic viscosity, the angled brackets are some appro-
priate spatial and/or temporal averaging, and U and L are some appropriate characteristic
velocity scale and length scale. Comparing the scaling to the definition of ε, it is apparent
that requiring the scaling in the limit as ν → 0 appears to imply a loss of smoothness in
the symmetric part of the perturbation strain tensor s′ij, the occurence of which is still
an open (and million dollar) question.
The presence of a ‘stable’ stratification adds further, profound complication, even for the
simplest possible class of model flows in the Boussineq, zero Mach number limit with a
divergence-free velocity field and a linear equation of state, where the only dynamical
effect of variations in fluid density relative to a hydrostatic base state is through the
buoyancy force term in the vertical velocity equation. There are two obvious ways to
appreciate this ‘complication’. The first is that the presence of ‘buoyancy’ within the
flow inevitably introduces anisotropy into the velocity components, with statically stable
stratification tending to suppress vertical motions. The second is through consideration of
the energetics of the flow. Since a key characteristic of turbulence is that the dissipation
rate ε of ‘turbulent’ kinetic energy increases, there is thus an irreversible conversion of
kinetic energy to internal energy, which within this simple class does not feed back on

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 1



the density field. When the fluid is stratified however, the potential energy of the flow
can vary, and so now there are two possible ultimate sinks of the kinetic energy of the
flow: irreversible loss to the internal energy reservoir and irreversible conversion to an
increased potential energy of the system. Such irreversible conversion is associated with
irreversible modification of the density of fluid parcels through molecular mixing, which
it is enhanced significantly by turbulent motions.
Quantification of that mixing is central to parameterization of the vertical transport of
heat in the ocean, a key part of the so-called ‘meridional overturning circulation’ (see for
example Ferrari and Wunsch (2009)). Since mixing occurs on scales which are orders of
magnitude too small to be captured by even regional models, idealised process studies
are needed to identify and parameterize key processes. There has been a huge amount
of research in this area, considering every stage of turbulent flow, from transition due to
flow instability or boundary effects through the dynamics of quasi-stationary turbulence to
ultimate late-time decay. It is becoming increasingly clear that any such parameterizations
must capture a range of length scales of the flow. For example, during the stage of
vigorous sheared turbulent motions in a stratified fluid, the dynamical behaviour varies
qualitatively with the relative sizes of the Ozmidov length scale LO, the Corrsin length
scale LC and the Kolmogorov length scale LK defined as

LO =

(
ε

N3
b

)1/2

, LC =

(
ε

S3
b

)1/2

, LK =

(
ν3

ε

)1/4

, (2)

where Nb and Sb are some appropriate outer scale buoyancy frequency, and velocity shear
respectively. The so-called buoyancy Reynolds number ReB, which is commonly used as
a measure of the intensity of turbulence in a stratified fluid is defined as

ReB =
ε

νN2
b

=

(
LO
LK

)4/3

, (3)

Therefore, flow regimes, characteristic of the oceans where ReB � 1 (see for example
Brethouwer et al. (2007)) are associated with a large scale separation between LO and
LK , thus allowing for the existence of a classical inertial range of scales much larger than
the Kolmogorov scale (and so unaffected by viscosity) and much smaller than the Ozmidov
scale (and so not strongly affected by the stratification).
Of course, these are by no means the only dynamically important length scales. Indeed,
it is becoming increasingly apparent that much of the world’s oceans are in a strongly
stratified turbulent regime, characterised by very small horizontal Froude number Fh
yet order one vertical Froude number Fv, defined as

Fh =
U

NbLh
� 1, Fv =

U

NbLv
∼ O(1), (4)

where Lh and Lv are some characteristic horizontal and vertical scales. As shown by
Billant & Chomaz and Lindborg (see Brethouwer et al. (2007) for discussion), the ordered
scaling Lv � Lh � LO � LK leads to an inherently stratified turbulence regime with
significant anisotropy in the velocity components (with w � u, v) and yet a forward
cascade with a horizontal energy spectrum exhibiting a k−5/3 power law dependence on
the horizontal wavenumber k.
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2 Layered flows

Importantly, this regime implies that such stratified turbulent flow is generically layered,
in that the flow arranges itself in such a way that characteristic horizontal scales are
much larger than characteristic vertical scales. There is increasing observational evidence
(Falder et al. (2016)) of such ‘layered anisotropic stratified turbulence’ (LAST) occuring in
the ocean, and so there is a natural need to consider the behaviour of ‘layered’ stratified
flows, where ‘layers’ of relatively deep regions of relatively weakly stratified fluid are
separated by ‘interfaces’, relatively shallow regions of relatively strongly stratified fluid. Of
course, it is not just LAST that can lead to layered density distributions. It is well-known
that double diffusive processes produce characteristic, and commonly observed staircases.
Furthermore, as originally proposed by Phillips (1972), if the vertical buoyancy flux varies
non-monotonically with overall stratification, the development of layer/interface structure
in the density field is inevitable. Such a structure has been observed in reduced models
(Balmforth et al. (1998)) and experiments (Oglethorpe et al. (2013)), though it is an open,
and important question whether this non-monotonicity is generic of stratified mixing.
Layered stratified shear flows have very different stability properties from flows with more
uniformly varying density, as in the presence of a large-scale shear, such flows have non-
trivial structure in the gradient Richardson number Rig(y, t) = N2

b /S
2
b , Such non-trivial

structure generically ensures that the classic Miles-Howard criterion does not apply, even
when the overall stratification is very ‘strong’, and so flow instabilities are not typically
precluded. Just such a layered stratified shear flow was considered originally by Taylor
in his famous Adams Prize essay of 1915 on ‘Turbulent motions in fluids’, in which he
also derived the Taylor-Goldstein equation for the linear stability properties of an inviscid
stratified shear flow. This equation was actually only published in Taylor (1931), and
Taylor explained the delay because he was unable to ‘undertake experiments designed to
verify, or otherwise, the results’ of the instability of a multi-layered stratified shear flow
whose existence he predicted. This ‘Taylor’ instability has received relatively little atten-
tion, certainly compared to the classic overturning Kelvin-Helmholtz instability (KHI) of
inflectional shear layers or even the Holmboe wave instability (HWI)which appears when
a relatively sharp density interface is embedded in a shear layer.
The growth mechanisms of these instabilities can be explained short-wave is in terms of
‘wave interaction theory’ (WIT) as reviewed in Carpenter et al. (2011). The KHI arises
due to the Doppler-shifted interaction between vorticity waves which arise at the two
edges of the shear layer, while the HWI arises due to the interaction between one of the
vorticity waves and an internal wave localized on the relatively sharp density interface.
Both of these instabilities are commonly observed in nature, experiments and numerical
simulations. They are known to be prone to a ‘zoo’ of secondary instabilities which trigger
the ultimate transition to turbulence and are thought to be key drivers of mixing, and
indeed layer formation and maintenance (Mashayek et al. (2013); Salehipour et al. (2016)).
However, much less is known about the instability originally considered by Taylor. It is
qualitatively different, as it does not rely upon the existence of a finite depth shear layer
or an inflectional velocity profile. It occurs (in its simplest form) in a three-layer, two
interface stratified fluid with a constant shear across the entire layer, and arises due to
the Doppler-shifted interaction between two internal waves on each of the two density
interfaces. It is an inherently stratified instability, and clearly demonstrates that static
stability can actually destabilize stratified shear flows. Recently, there has been some
renewed interest in the linear stability properties of this instability (Carpenter et al.
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(2010); Guha and Lawrence (2014); Heifetz and Mak (2015); Churilov (2016)) but study
of its finite amplitude behaviour has been strangely neglected (Caulfield et al. (1995); Lee
and Caulfield (2001); Balmforth et al. (2012)).
The instability appears to rely on interfaces being relatively ‘sharp’, which presents com-
putational challenges that are only recently being addressed. As discussed above however,
there are many reasons why stratified turbulent flows may naturally form ‘sharp’ inter-
faces, and so it is of real geophysical interest to investigate the properties of such flows.
There has been some recent evidence in a reduced, effectively long-wave model discussed
in Balmforth et al. (2012) that this Taylor instability also differs qualitatively in character
from the KHI and HWI, in that there is a suggestion that it is very ‘fragile’, and rapidly
breaks down, even in two dimensions. This breakdown appears to non-trivially modify
the mean flows to encourage the appearance of secondary HWI, which are themselves
much more robust and long-lived. This picture is consistent with the apparent difficulties
which Taylor found in observing this instability experimentally. Here, we discuss some
numerical simulations of two-dimensional flow at relatively high Reynolds number and
Prandtl number Pr = ν/κ (κ is the density diffusivity) which investigate the nonlinear
evolution and robustness of this instability.

3 Results

3.1 Flow geometry

We consider a two-dimensional three-layer Boussinesq fluid in a plane Couette flow (PCF)
geometry. The two channel walls of the PCF are moving at speeds ±∆U , and the fluid
at ±h has fixed density of ρ0 ∓∆ρ. The Reynolds number Re, Prandtl number Pr and
bulk Richardson number RiB are given by

Re =
∆Uh

ν
, Pr =

ν

κ
, RiB =

g∆ρh

ρ0∆U2
. (5)

In figure 1 we plot the nondimensional streamwise base velocity distribution U(y) and the
initial base density distribution ρ̄(y)− ρ0/∆ρ for R = 20 and R→∞, where

U(y) = U(y)x = yx̂, ρ̄(y)− ρ0
∆ρ

= −1

2
[tanhR(y − 1/3) + tanhR(y + 1/3)] . (6)

The gradient Richardson number Rig(y) for the base flow defined by (6) is

Rig(y) ≡ −RiB
∂ρtot
∂y(

∂utot
∂y

)2 =
RiBR

2

[
sech2R(y − 1/3) + sech2R(y + 1/3)

]
(7)

which is very close to zero for a large range of y for all bulk Richardson numbers RiB.
Specifically, there are broad regions of the flow for which Ri(y) < 1/4, and so there is at
least the possibility of linear instability for all values of RiB.

3.2 Linear stability properties

We consider this particular flow for two technical reasons. First, unstratified PCF is
linearly stable for all Reynolds numbers and so any instability in this particular flow
demonstrates the destabilizing effect of static instability. Second, there is no finite depth
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Figure 1: a) Vertical variation of base flow velocity U(y) (red), base flow density distribution ρ̄(z)−ρ0/∆ρ
with R = 20 (blue) and R → ∞ (dashed line) as defined in (6). b) Vertical variation of gradient
Richardson number Rig(y) as defined in (7) for the base flow density distribution with R = 20 shown
in a). The maximum value Rig(±1/3) = 5.22. c) Contours of the largest modal growth rate σ for
Re = 5000, Pr = 70 and R = 20. The outermost (and darkest) blue contour has σ = 0, and there
is a constant contour interval of 0.005. The cross marks the values of wavenumber and RiB which are
numerically simulated: α = 1.87, RiB = 0.51, with growth rate σ = 0.093. The black solid lines show
the stability boundary for the piecewise linear density profile shown with a dashed line in panel a).

shear layer, and so a primary KHI is precluded. Therefore, any observed instability must
be of the type considered by Taylor. Indeed, a conventional analysis of the stratified Orr-
Somerfeld equation shows that this flow is linearly unstable for arbitrary RiB as shown in
figure 1c. We assume perturbations of normal mode form: (u, ρ) = [û(y), ρ̂(y)] exp(ik[x−
ct]) and σ = kci. Contours of growth rate σ are plotted in figure 1c. The black solid
lines show the marginal contours for the stability of an inviscid flow with stepwise density
distribution as shown with the dashed black lines in figure 1a, which has a very similar
structure to the band of instability first determined by TaylorTaylor (1931), and so it is
clearly appropriate to identify this branch of instability (with zero real phase speed) as
being of the same kind.

3.3 Nonlinear dynamics

We study the two-dimensional, nonlinear evolution of both primary and secondary insta-
bilities in a flow corresponding to the parameters marked with a cross in figure 1c, i.e.
Re = 5000, Pr = 70, RiB = 0.51 and Lx = 6.72, corresponding to two wavelengths of
the most unstable mode of linear theory. The equations of motion were integrated using
Diablo, a parallel Fortran-based Navier–Stokes time-stepping numerical pseudo-spectral
code developed by T. Bewley and J. R. Taylor at UCSD. We use a 2048 × 2033 grid,
which is more than sufficient to capture the dynamics. We initialise the simulations with
a small amplitude of the unstable modal form and a smaller amplitude solenoidal noise
field to allow for secondary instabilities. The noise accounts for 1% by amplitude of the
initial condition perturbation. Figure 2 shows snapshots of the flow at different points
during the evolution of the system. The primary instability results in cusps and streaks
of vorticity forming on the density interfaces, pulling them towards each other as can be
seen in the first panel of figure 2. These vorticity streaks then begin to roll up to form
two coherent vortical cores, as the finite amplitude manifestation of this instability. These
vortical cores begin to lose energy as they are sheared out, and there is a misalignment
of the cusps on the density interfaces, resulting in the creation of two more vortical cores
located between the primary pair of vortical cores as is evident in the second panel of
figure 2. The two newly created vortical cores begin to grow in size and appear to squeeze
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Figure 2: Snapshots of the nonlinear flow evolution at various times. Left hand column shows total
density field, middle column shows perturbation vorticity field and right hand column shows the mean
horizontal velocity (red), mean density (blue) and notional associated gradient Richardson number (black)
at t = 70, 95, 100, 125, 140, 200, 380 and 400.
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the two original vortical cores. This causes complex spatio-temporal vorticity dynamics
within the two original vortical cores, as is evident in the third and fourth panels of figure
2. The squeezing of the two original vortical cores causes a cascade of secondary braid-like
instabilities that results in small-scale disorder in the intermediate layer, and a destruc-
tion of the cusps on the two density interfaces due to vigorous mixing in the intermediate
layer. The disordered vorticity field is evident in the fifth panel of figure 2.
The mean velocity profile during this disordered state exhibits increased shear over the
laminar profile at each of the two density interfaces. This increased shear spontaneously
creates eight regions of negative vorticity, four above the upper density interface and
four below the lower density interface, as seen in the sixth panel of figure 2. These
vortices also cause wisps of fluid from the intermediate density layer into both the upper
and lower density layers, and are due to the parasitic secondary appearance of a nonlinear
Holmboe wave, associated with the localized intensified shear in the vicinity of each density
interface. The vigorous mixing associated with the braid-instability-driven decay of the
evolution of the primary instability has rearranged the mean fields in just such a way to
cause the flow to become susceptible to the appearance of HWI. Soon after the appearance
of wavelength four nonlinear Holmboe waves there is a coarsening to wavelength two
nonlinear Holmboe waves, as is apparent from the two vortices above the upper density
interface and two vortices below the lower density interface in the seventh panel in figure
2. The wavelength two nonlinear Holmboe wave state gradually increases in energy during
150 . t . 275. The peak in energy at t ≈ 275 appears to correspond with the wavelength
two state interacting with the flow boundaries, and this mediates the end of continued
energy growth. As the flow begins to decay, there is yet another coarsening event, and the
flow settles onto a large amplitude single wavelength nonlinear Holmboe wave for t & 350.
This final state, which is visible in the bottom two panels of figure 2, is reminiscent of the
large amplitude nonlinear Holmboe wave found by Balmforth et al. (2012).

4 Conclusions

Although such two-dimensional simulations at high Reynolds number should be treated
with caution, two key conclusions consistent with the results of Balmforth et al. (2012) can
be drawn. First, the Taylor instability is clearly ‘fragile’ and prone to strong secondary
two-dimensional instabilities at high Reynolds number. Second, those secondary instabil-
ities can modify the base flow in a way that then leads to the ‘parasitic’ development of
HWI at later times in layered stratified shear flows. This is apparently due to the local
intensification of shear at each of the relatively sharp density interfaces, as is apparent in
the fifth panel of figure 2. Therefore, we may conclude that the instability first described
by Taylor can grow very strongly in layered stratified shear flows, which as we have argued
are likely to be very common in geophysical flows prone to vigorous stratified turbulence.
This instability however appears to be extremely fragile to secondary instabilities, even
in two dimensions, and so it is unsurprising that it has proved difficult to observe. That
does not mean it is unimportant however, as it can strongly modify the mean flow in
such a way to trigger Holmboe instabilities, which appear to be very robust. To ‘close the
loop’ of relevance to real geophysical flows however, it is clearly important to consider the
mixing properties of such flows in three dimensions, to investigate in particular whether
they differ strongly from other more widely studied flows, such as flows prone to primary
overturning instabilities of Kelvin-Helmholtz type.
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