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Abstract
We discuss turbulent dynamics and mixing of a variable-density flow subject to a uniform-
acceleration field. The flow resulting from initial misalignments of pressure and density
gradients is investigated for small to large density ratios, with evidence that the small-
density ratio flow is described by the Boussinesq approximation. A new shear-layer growth
rate is reported. Spectra collapse when properly scaled for variable density.

1 Introduction

Turbulence and mixing between fluids of different densities responding to an externally
imposed acceleration field, such as gravity, occur in many applications ranging from geo-
physics to astrophysics. The present study focuses on flow dynamics resulting from a body
force, ρg, with ρ the local fluid density and g = −ẑ g the imposed uniform-acceleration
field, in the zero Mach number limit.

Many flows can be treated as incompressible with small density variations, ∆ρ/ρ� 1, and
the Boussinesq approximation can often adequately describe the flow physics (e.g., Peltier
and Caulfield, 2003, and references therein). Even though the Boussinesq linearization
only accounts for the body force in the momentum equation (Batchelor et al., 1992) for
small density variations, the Boussinesq linearization may capture the dynamics of mis-
aligned hydrostatic pressure and density gradients in flows with small density variations.
For the large density ratios studied, however, the Boussinesq linearization approximation
cannot be used.

To study the effects of baroclinic torques, a flow configuration is considered in which two
different gas-phase fluids are initialized with their density gradient perpendicular to the
uniform-acceleration field. Density ratios in the range of 1.005 ≤ R ≡ ρ1/ρ2 ≤ 10 are
considered. In particular, it is presently found that even if this flow is initialized with
near-unity density ratios, i.e., R = 1+ε, which one would expect to tend to the Boussinesq
approximation for small ε, its flow dynamics are statistically similar to large-density-ratio
cases when properly scaled.

Generically, such flows are encountered in Rayleigh-Taylor instability, inertial-confinement
fusion, as well as astrophysical and geophysical environments, such as in katabatic winds
and Antarctic bottom-water (AABW) formation.
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2 Problem formulation

The conservation of mass, momentum, and species-transport equations, absent species
sources and sinks, are solved in the presence of the externally imposed uniform-acceleration
field.

∂ρ

∂t
+∇ · (ρu) = 0 (1a)

∂ρu

∂t
+∇ · (ρuu) = −(Γ +∇p)− ρgẑ +∇ · τ (1b)

∂ρYα
∂t

+∇ · [ρYα(u + vα)] = 0 (1c)

where ρ = ρ(x, t) is the local binary-mixture density, u(x, t) is the velocity vector, p(x, t)
is the pressure, Γ is the uniform component of the pressure gradient, Yα(x, t) is the mass
fraction of the α-species, and vα(x, t) is the α-species diffusion velocity (e.g., Dimotakis,
2005). A Newtonian viscous stress tensor, τ (x, t), is assumed for monatomic gases (zero
bulk viscosity).

The flow evolves with initial pure-fluid densities ρ1, ρ2, and ρ1 > ρ2. In the limit of zero
Mach number, the only part in the species-diffusion velocity is that for Fickian transport,
i.e., ρYαvα = −ρD∇Yα, which with equations 1a and 1c yields the density-evolution
equation,

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u = ρ∇ ·

(
D
ρ
∇ρ
)
. (1d)

Gas-phase molecular diffusion (Sc = ν/D ≈ 1) is assumed, with a uniform dynamic vis-
cosity, µ, leading to a variable diffusion coefficient, D(x, t) = µ/ρ(x, t). Flow simulations
set Γ = −ρ0gẑ, with ρ0 = βρ1 + (1− β)ρ2, where β is the volume fraction of high-density
fluid in the domain. This choice ensures constant volume-averaged momentum.

This flow is studied by direct numerical simulation (DNS) in a triply-periodic cubic do-
main, initialized with high-density fluid between regions of low-density fluid, subject to an
imposed uniform vertical acceleration field (Figure 1). A Fourier pseudo-spectral spatial-
discretization method is used with a Helmholtz-Hodge decomposition of the pressure
(Chung and Pullin, 2010) and a semi-implicit Runge-Kutta method (Spalart et al., 1991)
for time integration.

3 Flow parameters

The flow domain is a triply periodic cube with a (dimensional) spatial extent scaled to
L = 4π. The characteristic time, τ , and other parameters are scaled as,

τ = 4π

√
`

A g
(2)

` =
L

2
(3)

A =
R− 1

R + 1
(4)

R =
ρ1
ρ2

(5)
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Figure 1: Simulation schematic of the perturbed initial density.

withA the Atwood number andA g the reduced acceleration. Additionally, ρ0 = 1 always,
which selects ρ1 and ρ2, given β and R. Figure 2 displays two-dimensional slices of the
domain for flow with R = 1.05 at various non-dimensional times to illustrate its evolution.
The flow initially is dominated by molecular diffusion, and then enters an unsteady regime
characterized by eddy rollups. At later times, the flow becomes turbulent, and eventually
homogenizes (because of domain periodicity).

4 Shear-layer growth

The mixed-fluid region (i.e., the shear layer), δ, is defined by a 1% criterion (Koochesfahani
and Dimotakis, 1986), i.e., the extent within which the high-density fluid mass fraction,
Y1, is in the range

0.01 < Y1 < 0.99 (6)

where

Y1(x, t) =

1

ρ(x, t)
− 1

ρ2
1

ρ1
− 1

ρ2

. (7)

Figure 3 displays the non-dimensional scaled shear-layer width over time for various den-
sity ratios. The flow is initialized with a finite transition width between the two fluids
corresponding to an initial time, ti. Scaling the initial shear-layer widths by this value
collapses the data in the diffusive regime. In this regime, shear-layers grow as

√
t µ/ρ0,

as expected, modulo an initial finite width, which is the natural scaling parameter of
Equation 1a for Sc = 1. This is confirmed in the data in Figure 3. The flow subsequently
transitions, monotonically with R, to a second regime of unsteady growth and eventually
turbulence. Viscosity for the lower-R flow (R < 1.05) simulations was set higher than
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Figure 2: Two-dimensional slices of high-density fluid mole-fraction for R = 1.05. Reynolds numbers
based on shear-layer width, δ.

it could have been, which may have affected their transition times from the diffusion-
dominated regime. This second regime exhibits a cubic growth in time for the shear-layer
width, i.e., δ(t) ∼ (t+ ti)

3. Slope changes at δ/` ≈ 1 mark encroachment of the turbulent
region across the span of the free streams and the loss of pure free-stream fluid on either
side of the shear layer at a location; the mixture begins to homogenize.

The unsteady/turbulent regime shear-layer width dependence on the cube of time is a
robust result that holds for small to large density ratios. This can be explained by
dimensional analysis and similarity arguments. The time rate of change of δ can be
expressed in terms of scaled quantities, i.e.,

d δ

d(t/τ)
' Λ(t; τ, R, g) . (8a)

Λ has units of length, with a choice here similar to that for Rayleigh-Taylor (RT) flow,

d δ

d(t/τ)
∝ A g t2 . (8b)

Non-dimensionalizing this equation yields the observed scaling (modulo virtual origins in
t and δ),

d (δ/`)

d(t/τ)
' Cδ

(
t

τ

)2

, (8c)

where Cδ is a proportionality constant. We note that rescaling ` (or τ) would rescale Cδ,
but would not alter the growth-rate power-law dependence on time.

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 4



Figure 3: Non-dimensionalized shear-layer width, δ/`, scaled by initial non-dimensional time. Colored
lines are from simulations and black lines are slope references.

Other fast-growing flows, such as the vertical extent of the mixed-fluid region in RT flow,
hRT(t), also evolve in response to a uniform-acceleration field, e.g., gravity, and possess
the same A g t2 length scale invoked in Equation 8b. However, the present flow has a
characteristic time scale, τ , tied to a fixed length scale, `, that has no RT counterpart.
We note that δ in the present flow is a turbulent region horizontal width, whereas hRT is
the vertical extent of the RT turbulent region, governed by different dynamics.

Similar time scaling arises in buoyancy-dominated flows (Batchelor et al., 1992) and RT
flows (Cook and Dimotakis, 2001). However, τ here corresponds to a pendulum-like flow
period, inferred from Figure 2, and is that of a pendulum of length ` spanning the two
free-stream mid-points in a reduced acceleration field, A g. High-density fluid accelerates
downwards with low-density fluid accelerating upwards, like an initially horizontal pen-
dulum. This behavior is induced by the perpendicular (or misaligned) growth direction
of the shear layer with the acceleration field direction, which does not govern the vertical
extent growth in RT flow. However, the present flow is relevant to RT flow. The shear-
layers here correspond to the regions between the “spikes” and “bubbles” in RT flow. The
more rapidly growing shear-layers presented will encroach across the pure-fluid supply in
RT flow, with a different very-late time growth regime expected that should be slower.

5 Spectra

Specific kinetic-energy spectra, Su·u, are compared to (full) kinetic-energy spectra in terms
of j = ρ1/2u (Kida and Orszag, 1992). Sj·j/ρ spectra are plotted (dashed lines) along with
Su·u spectra (specific-kinetic energy—solid lines), at a Re ≈ 8500 attained for various
density ratios, with the R = 10 case plotted at a slightly lower Re since it did not
reach Re ≈ 8500 (Figure 4). The two sets of spectra agree when scaled (ρ is the mean
shear-layer density), for all R and Re investigated. Spectral agreement does not imply
statistical independence; density and velocity are coupled in this flow. Variable-density
kinetic-energy spectra can then be mapped to uniform-density spectra.
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Figure 4: Specific kinetic energy spectra, Su·u (solid), and kinetic energy spectra, Sj·j/ρ (dashed), at
Re ≈ 8500, where j · j = ρu · u = ρu2.

6 Conclusions

The behavior of variable-density turbulence in the flow studied can be mapped to uniform-
density turbulence in term of spectral scaling. A new finding is the shear-layer width
growth is cubic in time in the unsteady/turbulent regime, δ(t) ∼ (t + ti)

3, which is
consistent with a fixed imposed time scale, τ .
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Note: An error was noted in the alignment statistics of vorticity and baroclinic torques
in the originally posted paper and conference presentation. The present typescript is an
update without the corresponding sections. The authors regret the original error.
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